Skip to main content

Prototype-Enhanced Hypergraph Learning for Heterogeneous Information Networks

  • Conference paper
  • First Online:
MultiMedia Modeling (MMM 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14556))

Included in the following conference series:

  • 1122 Accesses

Abstract

The variety and complexity of relations in multimedia data lead to Heterogeneous Information Networks (HINs). Capturing the semantics from such networks requires approaches capable of utilizing the full richness of the HINs. Existing methods for modeling HINs employ techniques originally designed for graph neural networks, and HINs decomposition analysis, like using manually predefined metapaths. In this paper, we introduce a novel prototype-enhanced hypergraph learning approach for node classification in HINs. Using hypergraphs instead of graphs, our method captures higher-order relationships among nodes and extracts semantic information without relying on metapaths. Our method leverages the power of prototypes to improve the robustness of the hypergraph learning process and creates the potential to provide human-interpretable insights into the underlying network structure. Extensive experiments on three real-world HINs demonstrate the effectiveness of our method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arya, D., Gupta, D.K., Rudinac, S., Worring, M.: Adaptive neural message passing for inductive learning on hypergraphs. arXiv preprint arXiv:2109.10683 (2021)

  2. Ding, K., Wang, J., Li, J., Li, D., Liu, H.: Be more with less: hypergraph attention networks for inductive text classification. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (2020)

    Google Scholar 

  3. Dong, Y., Chawla, N.V., Swami, A.: Metapath2vec: scalable representation learning for heterogeneous networks. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2017)

    Google Scholar 

  4. Efthymiou, A., Rudinac, S., Kackovic, M., Worring, M., Wijnberg, N.: Graph neural networks for knowledge enhanced visual representation of paintings. In: Proceedings of the 29th ACM International Conference on Multimedia (2021)

    Google Scholar 

  5. Feng, Y., You, H., Zhang, Z., Ji, R., Gao, Y.: Hypergraph neural networks (2019)

    Google Scholar 

  6. Fu, J., Hou, C., Zhou, W., Xu, J., Chen, Z.: Adaptive hypergraph convolutional network for no-reference 360-degree image quality assessment. In: Proceedings of the 30th ACM International Conference on Multimedia (2022)

    Google Scholar 

  7. Fu, X., Zhang, J., Meng, Z., King, I.: MAGNN: metapath aggregated graph neural network for heterogeneous graph embedding. In: Proceedings of The Web Conference 2020 (2020)

    Google Scholar 

  8. Gao, Y., Feng, Y., Ji, S., Ji, R.: HGNN+: general hypergraph neural networks. IEEE Trans. Pattern Anal. Mach. Intell. 35, 3181–3199 (2023)

    Google Scholar 

  9. Gao, Y., Zhang, Z., Lin, H., Zhao, X., Du, S., Zou, C.: Hypergraph learning: methods and practices. IEEE Trans. Pattern Anal. Mach. Intell. 25, 2548–2566 (2022)

    Google Scholar 

  10. Hu, Z., Dong, Y., Wang, K., Sun, Y.: Heterogeneous graph transformer. In: Proceedings of The Web Conference (2020)

    Google Scholar 

  11. Huang, J., Yang, J.: UniGNN: a unified framework for graph and hypergraph neural networks. arXiv preprint arXiv:2105.00956 (2021)

  12. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  13. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  14. Li, M., Zhang, Y., Li, X., Zhang, Y., Yin, B.: Hypergraph transformer neural networks. ACM Trans. Knowl. Discov. Data 17, 1–22 (2023)

    Google Scholar 

  15. Liu, J., Song, L., Wang, G., Shang, X.: Meta-HGT: metapath-aware hypergraph transformer for heterogeneous information network embedding. Neural Networks (2023)

    Google Scholar 

  16. Lv, Q., et al.: Are we really making much progress? Revisiting, benchmarking and refining heterogeneous graph neural networks. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining (2021)

    Google Scholar 

  17. Mao, Q., Liu, Z., Liu, C., Sun, J.: Hinormer: Representation learning on heterogeneous information networks with graph transformer. In: Proceedings of the ACM Web Conference 2023, pp. 599–610 (2023)

    Google Scholar 

  18. McInnes, L., Healy, J., Melville, J.: Umap: Uniform manifold approximation and projection for dimension reduction. arXiv preprint arXiv:1802.03426 (2018)

  19. Schlichtkrull, M., Kipf, T.N., Bloem, P., Van Den Berg, R., Titov, I., Welling, M.: Modeling relational data with graph convolutional networks. In: The Semantic Web: 15th International Conference (2018)

    Google Scholar 

  20. Shi, C., Li, Y., Zhang, J., Sun, Y., Yu, P.S.: A survey of heterogeneous information network analysis. IEEE Transactions on Knowledge and Data Engineering (2017)

    Google Scholar 

  21. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: International Conference on Learning Representations (2018)

    Google Scholar 

  22. Wang, X., Bo, D., Shi, C., Fan, S., Ye, Y., Yu, P.S.: A survey on heterogeneous graph embedding: methods, techniques, applications and sources. IEEE Trans. Big Data 9, 415–436 (2023)

    Article  Google Scholar 

  23. Wang, X., et al.: Heterogeneous graph attention network. In: The World Wide Web Conference (2019)

    Google Scholar 

  24. Wang, Y., Zhu, L., Qian, X., Han, J.: Joint hypergraph learning for tag-based image retrieval. IEEE Trans. Image Process. 27, 4437–4451 (2018)

    Article  MathSciNet  Google Scholar 

  25. Wu, X., Chen, Q., Li, W., Xiao, Y., Hu, B.: AdahGNN: adaptive hypergraph neural networks for multi-label image classification. In: Proceedings of the 28th ACM International Conference on Multimedia (2020)

    Google Scholar 

  26. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Yu, P.S.: A comprehensive survey on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 32, 4–24 (2021)

    Article  MathSciNet  Google Scholar 

  27. Xie, Y., Xu, Z., Zhang, J., Wang, Z., Ji, S.: Self-supervised learning of graph neural networks: a unified review. IEEE Trans. Pattern Anal. Mach. Intell. 45, 2412–2419 (2022)

    Article  Google Scholar 

  28. Yadati, N., Nimishakavi, M., Yadav, P., Nitin, V., Louis, A., Talukdar, P.: HyperGCN: a new method for training graph convolutional networks on hypergraphs. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  29. Yang, C., Xiao, Y., Zhang, Y., Sun, Y., Han, J.: Heterogeneous network representation learning: A unified framework with survey and benchmark. IEEE Trans. Knowl. Data Eng. 34, 4854–4873 (2022)

    Article  Google Scholar 

  30. Yang, H.M., Zhang, X.Y., Yin, F., Liu, C.L.: Robust classification with convolutional prototype learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  31. Yang, X., Yan, M., Pan, S., Ye, X., Fan, D.: Simple and efficient heterogeneous graph neural network. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 37, pp. 10816–10824 (2023)

    Google Scholar 

  32. Yun, S., Jeong, M., Kim, R., Kang, J., Kim, H.J.: Graph transformer networks. In: Advances in Neural Information Processing Systems (2019)

    Google Scholar 

  33. Zhang, C., Song, D., Huang, C., Swami, A., Chawla, N.V.: Heterogeneous graph neural network. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (2019)

    Google Scholar 

  34. Zhang, H., Liu, X., Zhang, J.: HEGEL: hypergraph transformer for long document summarization. In: Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing (2022)

    Google Scholar 

  35. Zhou, D., Huang, J., Schölkopf, B.: Learning with hypergraphs: clustering, classification, and embedding. In: Advances in Neural Information Processing Systems (2006)

    Google Scholar 

  36. Zhu, S., Zhou, C., Pan, S., Zhu, X., Wang, B.: Relation structure-aware heterogeneous graph neural network. In: IEEE International Conference on Data Mining (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuai Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, S. et al. (2024). Prototype-Enhanced Hypergraph Learning for Heterogeneous Information Networks. In: Rudinac, S., et al. MultiMedia Modeling. MMM 2024. Lecture Notes in Computer Science, vol 14556. Springer, Cham. https://doi.org/10.1007/978-3-031-53311-2_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53311-2_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53310-5

  • Online ISBN: 978-3-031-53311-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics