Skip to main content

Deep Learning-Based Rotational-XOR Distinguishers for AND-RX Block Ciphers: Evaluations on Simeck and Simon

  • Conference paper
  • First Online:
Selected Areas in Cryptography – SAC 2023 (SAC 2023)

Abstract

The use of deep learning techniques in cryptanalysis has garnered considerable interest following Gohr’s seminal work in 2019. Subsequent studies have focused on training more effective distinguishers and interpreting these models, primarily for differential attacks. In this paper, we shift our attention to deep learning-based distinguishers for rotational XOR (RX) cryptanalysis on AND-RX ciphers, an area that has received comparatively less attention. Our contributions include a detailed analysis of the state-of-the-art deep learning techniques for RX cryptanalysis and their applicability to AND-RX ciphers like Simeck and Simon. Our research proposes a novel approach to identify DL-based RX distinguishers, by adapting the evolutionary algorithm presented in the work of Bellini et al. to determine optimal values for translation (\(\delta \)) and rotation offset (\(\gamma \)) parameters for RX pairs. We successfully identify distinguishers using deep learning techniques for different versions of Simon and Simeck, finding distinguishers for the classical related-key scenario, as opposed to the weak-key model used in related work. Additionally, our work contributes to the understanding of the diffusion layer’s impact in AND-RX block ciphers against RX cryptanalysis by focusing on determining the optimal rotation parameters using our evolutionary algorithm, thereby providing valuable insights for designing secure block ciphers and enhancing their resistance to RX cryptanalysis.

This publication has emanated from research supported in part by a Grant from Science Foundation Ireland under Grant number 18/CRT/6222.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ashur, T., Liu, Y.: Rotational cryptanalysis in the presence of constants. IACR Trans. Symmetric Cryptol. 2016, 57–70 (2016)

    Article  Google Scholar 

  2. Baksi, A.: Machine learning-assisted differential distinguishers for lightweight ciphers. In: Baksi, A. (ed.) Classical and Physical Security of Symmetric Key Cryptographic Algorithms. CADM, pp. 141–162. Springer, Singapore (2022). https://doi.org/10.1007/978-981-16-6522-6_6

    Chapter  Google Scholar 

  3. Bard, G.: Algebraic Cryptanalysis. Springer, New York (2009). https://doi.org/10.1007/978-0-387-88757-9

    Book  Google Scholar 

  4. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: The SIMON and SPECK families of lightweight block ciphers. Cryptology ePrint Archive (2013)

    Google Scholar 

  5. Bellini, E., Gerault, D., Hambitzer, A., Rossi, M.: A cipher-agnostic neural training pipeline with automated finding of good input differences. Cryptology ePrint Archive (2022)

    Google Scholar 

  6. Benamira, A., Gerault, D., Peyrin, T., Tan, Q.Q.: A deeper look at machine learning-based cryptanalysis. In: Canteaut, A., Standaert, F.X. (eds.) EUROCRYPT 2021. LNSC, vol. 12696, pp. 805–835. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77870-5_28

    Chapter  Google Scholar 

  7. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. J. Cryptol. 4, 3–72 (1991). https://doi.org/10.1007/BF00630563

    Article  MathSciNet  Google Scholar 

  8. Bisong, E.: Google colaboratory, pp. 59–64. Apress, Berkeley (2019). https://doi.org/10.1007/978-1-4842-4470-8_7

  9. Chollet, F.: Keras (2015). https://github.com/fchollet/keras

  10. Gohr, A.: Improving attacks on round-reduced speck32/64 using deep learning. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNSC, vol. 11693, pp. 150–179. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7_6

    Chapter  Google Scholar 

  11. Gohr, A., Leander, G., Neumann, P.: An assessment of differential-neural distinguishers. Cryptology ePrint Archive (2022)

    Google Scholar 

  12. Hu, F., Wang, H., Wang, J.: Multi-leak deep-learning side-channel analysis. IEEE Access 10, 22610–22621 (2022)

    Article  Google Scholar 

  13. Khovratovich, D., Nikolić, I.: Rotational cryptanalysis of ARX. In: Hong, S., Iwata, T. (eds.) FSE 2010. LNSC, vol. 6147, pp. 333–346. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13858-4_19

    Chapter  Google Scholar 

  14. Khovratovich, D., Nikolić, I., Rechberger, C.: Rotational rebound attacks on reduced Skein. J. Cryptol. 27, 452–479 (2014). https://doi.org/10.1007/s00145-013-9150-0

    Article  MathSciNet  Google Scholar 

  15. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  16. Liu, Z., Li, Y., Wang, M.: Optimal differential trails in SIMON-like ciphers. IACR Trans. Symmetric Cryptol. 358–379 (2017)

    Google Scholar 

  17. Lu, J., Liu, G., Sun, B., Li, C., Liu, L.: Improved (related-key) differential-based neural distinguishers for SIMON and SIMECK block ciphers. Cryptology ePrint Archive (2022)

    Google Scholar 

  18. Lu, J., Liu, Y., Ashur, T., Sun, B., Li, C.: Improved rotational-XOR cryptanalysis of Simon-like block ciphers. IET Inf. Secur. 16(4), 282–300 (2022)

    Article  Google Scholar 

  19. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48285-7_33

    Chapter  Google Scholar 

  20. So, J.: Deep learning-based cryptanalysis of lightweight block ciphers. Secur. Commun. Netw. 2020, 1–11 (2020)

    Article  Google Scholar 

  21. Wang, X., Wu, B., Hou, L., Lin, D.: Automatic search for related-key differential trails in SIMON-like block ciphers based on MILP. In: Chen, L., Manulis, M., Schneider, S. (eds.) ISC 2018. LNSC, vol. 11060, pp. 116–131. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99136-8_7

    Chapter  Google Scholar 

  22. Yang, G., Zhu, B., Suder, V., Aagaard, M.D., Gong, G.: The Simeck family of lightweight block ciphers. In: Güneysu, T., Handschuh, H. (eds.) CHES 2015. LNSC, vol. 9293, pp. 307–329. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48324-4_16

    Chapter  Google Scholar 

  23. Zhang, L., Xing, X., Fan, J., Wang, Z., Wang, S.: Multilabel deep learning-based side-channel attack. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 40(6), 1207–1216 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amirhossein Ebrahimi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ebrahimi, A., Gerault, D., Palmieri, P. (2024). Deep Learning-Based Rotational-XOR Distinguishers for AND-RX Block Ciphers: Evaluations on Simeck and Simon. In: Carlet, C., Mandal, K., Rijmen, V. (eds) Selected Areas in Cryptography – SAC 2023. SAC 2023. Lecture Notes in Computer Science, vol 14201. Springer, Cham. https://doi.org/10.1007/978-3-031-53368-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53368-6_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53367-9

  • Online ISBN: 978-3-031-53368-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics