Abstract
The lookup table-based masking countermeasure is prevalent in real-world applications due to its potent resistance against side-channel attacks and low computational cost. The ASCADv2 dataset, for instance, ranks among the most secure publicly available datasets today due to two layers of countermeasures: lookup table-based affine masking and shuffling. Current attack approaches rely on strong assumptions. In addition to requiring access to the source code, an adversary would also need prior knowledge of random shares.
This paper forgoes reliance on such knowledge and proposes two attack approaches based on the vulnerabilities of the lookup table-based affine masking implementation. As a result, the first attack can retrieve all secret keys’ reliance in less than a minute without knowing mask shares. Although the second attack is not entirely successful in recovering all keys, we believe more traces would help make such an attack fully functional.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
It is important to note that subkey candidates can involve guessing any number of bits. Although we assume the AES cipher here, the concept remains algorithm-independent.
- 2.
The proposed attack target the intermediate data when \(\beta =r_{in}\) and \(\beta =r_{out}\).
- 3.
References
Amigo, G., Dong, L., Ii, R.J.M.: Forecasting pseudo random numbers using deep learning. In: 2021 15th International Conference on Signal Processing and Communication Systems (ICSPCS), pp. 1–7. IEEE (2021)
Benadjila, R., Khati, L., Prouff, E., Thillard, A.: Hardened library for AES-128 encryption/decryption on ARM Cortex M4 architecture (2019). https://github.com/ANSSI-FR/SecAESSTM32
Benadjila, R., Prouff, E., Strullu, R., Cagli, E., Dumas, C.: Deep learning for side-channel analysis and introduction to ASCAD database. J. Cryptogr. Eng. 10(2), 163–188 (2020)
Bhasin, S., Chattopadhyay, A., Heuser, A., Jap, D., Picek, S., Ranjan, R.: Mind the portability: a warriors guide through realistic profiled side-channel analysis. In: Network and Distributed System Security Symposium, NDSS 2020, pp. 1–14 (2020)
Bogdanov, A.: Improved side-channel collision attacks on AES. In: Adams, C., Miri, A., Wiener, M. (eds.) SAC 2007. LNCS, vol. 4876, pp. 84–95. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77360-3_6
Bogdanov, A., Kizhvatov, I.: Beyond the limits of DPA: combined side-channel collision attacks. IEEE Trans. Comput. 61(8), 1153–1164 (2011)
Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5_2
Bronchain, O., Standaert, F.X.: Side-channel countermeasures’ dissection and the limits of closed source security evaluations. IACR Trans. Cryptographic Hardware Embed. Syst. 1–25 (2020)
Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to counteract power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 398–412. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_26
Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36400-5_3
Coron, J.-S.: Higher order masking of look-up tables. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 441–458. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_25
Coron, J.S., Rondepierre, F., Zeitoun, R.: High order masking of look-up tables with common shares. Cryptology ePrint Archive (2017)
Coron, J.S., Rondepierre, F., Zeitoun, R.: High order masking of look-up tables with common shares. IACR Trans. Cryptographic Hardware Embed. Syst. 40–72 (2018)
Cristiani, V., Lecomte, M., Hiscock, T., Maurine, P.: Fit the joint moments: how to attack any masking scheme. IEEE Access 10, 127412–127427 (2022)
Daemen, J., Rijmen, V.: AES proposal: Rijndael (1999)
Dol, N.T., Le, P.C., Hoang, V.P., Doan, V.S., Nguyen, H.G., Pham, C.K.: MO-DLSCA: deep learning based non-profiled side channel analysis using multi-output neural networks. In: 2022 International Conference on Advanced Technologies for Communications (ATC), pp. 245–250. IEEE (2022)
Fumaroli, G., Martinelli, A., Prouff, E., Rivain, M.: Affine masking against higher-order side channel analysis. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 262–280. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19574-7_18
Gérard, B., Standaert, F.-X.: Unified and optimized linear collision attacks and their application in a non-profiled setting. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 175–192. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33027-8_11
Hospodar, G., Gierlichs, B., De Mulder, E., Verbauwhede, I., Vandewalle, J.: Machine learning in side-channel analysis: a first study. J. Cryptogr. Eng. 1(4), 293–302 (2011)
Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_25
Maghrebi, H., Portigliatti, T., Prouff, E.: Breaking cryptographic implementations using deep learning techniques. In: Carlet, C., Hasan, M.A., Saraswat, V. (eds.) SPACE 2016. LNCS, vol. 10076, pp. 3–26. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49445-6_1
Marquet, T., Oswald, E.: A comparison of multi-task learning and single-task learning approaches. Cryptology ePrint Archive (2023)
Masure, L., Strullu, R.: Side-channel analysis against ANSSI’s protected AES implementation on ARM: end-to-end attacks with multi-task learning. J. Cryptographic Eng. 1–19 (2023)
Perin, G., Wu, L., Picek, S.: Exploring feature selection scenarios for deep learning-based side-channel analysis. IACR Trans. Cryptographic Hardware Embed. Syst. 828–861 (2022)
Picek, S., et al.: Side-channel analysis and machine learning: a practical perspective. In: 2017 International Joint Conference on Neural Networks, IJCNN 2017, Anchorage, AK, USA, 14–19 May 2017, pp. 4095–4102 (2017)
Picek, S., Perin, G., Mariot, L., Wu, L., Batina, L.: SoK: deep learning-based physical side-channel analysis. ACM Comput. Surv. 55(11), 1–35 (2023)
Schindler, W., Lemke, K., Paar, C.: A stochastic model for differential side channel cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 30–46. Springer, Heidelberg (2005). https://doi.org/10.1007/11545262_3
Schramm, K., Paar, C.: Higher order masking of the AES. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 208–225. Springer, Heidelberg (2006). https://doi.org/10.1007/11605805_14
Schramm, K., Wollinger, T., Paar, C.: A new class of collision attacks and its application to DES. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 206–222. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39887-5_16
Staib, M., Moradi, A.: Deep learning side-channel collision attack. IACR Trans. Cryptographic Hardware Embed. Syst. 422–444 (2023)
Timon, B.: Non-profiled deep learning-based side-channel attacks with sensitivity analysis. IACR Trans. Cryptographic Hardware Embed. Syst. 107–131 (2019)
Tunstall, M., Whitnall, C., Oswald, E.: Masking tables—an underestimated security risk. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 425–444. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43933-3_22
Vadnala, P.K.: Time-memory trade-offs for side-channel resistant implementations of block ciphers. In: Handschuh, H. (ed.) CT-RSA 2017. LNCS, vol. 10159, pp. 115–130. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52153-4_7
Valiveti, A., Vivek, S.: Second-order masked lookup table compression scheme. IACR Trans. Cryptographic Hardware Embed. Syst. 129–153 (2020)
Vasselle, A., Thiebeauld, H., Maurine, P.: Spatial dependency analysis to extract information from side-channel mixtures: extended version. J. Cryptographic Eng. 1–17 (2023)
Veyrat-Charvillon, N., Medwed, M., Kerckhof, S., Standaert, F.-X.: Shuffling against side-channel attacks: a comprehensive study with cautionary note. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 740–757. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4_44
Wu, L., Perin, G., Picek, S.: The best of two worlds: Deep learning-assisted template attack. IACR Trans. Cryptographic Hardware Embed. Syst. 413–437 (2022)
Wu, L., Perin, G., Picek, S.: Hiding in plain sight: non-profiling deep learning-based side-channel analysis with plaintext/ciphertext. Cryptology ePrint Archive (2023)
Wu, L., Picek, S.: Remove some noise: on pre-processing of side-channel measurements with autoencoders. IACR Trans. Cryptographic Hardware Embed. Syst. 389–415 (2020)
Wu, L., Tiran, S., Perin, G., Picek, S.: An end-to-end plaintext-based side-channel collision attack without trace segmentation. Cryptology ePrint Archive (2023)
Zaid, G., Bossuet, L., Habrard, A., Venelli, A.: Methodology for efficient CNN architectures in profiling attacks. IACR Trans. Cryptographic Hardware Embed. Syst. 1–36 (2020)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Wu, L., Perin, G., Picek, S. (2024). Not so Difficult in the End: Breaking the Lookup Table-Based Affine Masking Scheme. In: Carlet, C., Mandal, K., Rijmen, V. (eds) Selected Areas in Cryptography – SAC 2023. SAC 2023. Lecture Notes in Computer Science, vol 14201. Springer, Cham. https://doi.org/10.1007/978-3-031-53368-6_5
Download citation
DOI: https://doi.org/10.1007/978-3-031-53368-6_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-53367-9
Online ISBN: 978-3-031-53368-6
eBook Packages: Computer ScienceComputer Science (R0)