Skip to main content

A Novel Ultra Short-Term Load Forecasting Algorithm of a Small Microgrid Based on Support Vector Regression

  • Conference paper
  • First Online:
6GN for Future Wireless Networks (6GN 2023)

Abstract

Based on the support vector regression (SVR), a novel ultra short-term load of forecasting algorithm is proposed in this paper. The algorithm is used to realize the online cycle prediction of the load. The historical load data is divided into three categories: working days, weekends and holidays. The similarity method is used to compute the correlation between the training dataset and the prediction load at the current time. The correlation values are sorted in descending order. The first kth load data are used for training to obtain three types of online forecasting models based on SVR. A novel particle swarm optimization (PSO) algorithm is designed to get the optimal parameters of SVR. The experiment on a commercial building of a small mirogrid system shows the designed algorithm works efficiently and stably.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goia, A., May, C., Fusai, G.: Functional clustering and linear regression for peak load forecasting. Int. J. Forecast. 26(4), 700–711 (2010)

    Article  Google Scholar 

  2. Ramanathan, R., Engle, R., Granger, C.W., Vahid-Araghi, F., Brace, C.: Short-run forecasts of electricity loads and peaks. Int. J. Forecast. 13(2), 161–174 (1997)

    Article  Google Scholar 

  3. Amral, N., Ozveren, C., King, D.: Short term load forecasting using multiple linear regression. In: UPEC 2007. 42nd International Universities Power Engineering Conference, Brighton, UK, pp.4–6 (2007)

    Google Scholar 

  4. Pappas, S., Ekonomou, L., Karamousantas, D., Chatzarakis, G., Katsikas, S., Liatsis, P.: Electricity demand loads modeling using autoregressive moving average(ARMA) models. Energy 33(9), 1353–1360 (2008)

    Article  Google Scholar 

  5. Lee, C.M., Ko, C.N.: Short-term load forecasting using lifting scheme and ARIMA models. Expert Syst. Appl. 38(5), 5902–5911 (2011)

    Article  Google Scholar 

  6. Cho, M., Hwang, J., Chen, C.S.: Customer short term load forecasting by using ARIMA transfer function model. In: Proceedings of 1995 International Conference on Energy Management and Power Delivery EMPD ’95, Singapore, pp. 21–23 (1995)

    Google Scholar 

  7. Taylor, J.W.: An evaluation of methods for very short-term load forecasting using minute-by-minute British data. Int. J. Forecast. 24(4), 645–658 (2008)

    Article  Google Scholar 

  8. Al-Hamadi, H., Soliman, S.: Short-term electric load forecasting based on Kalman filtering algorithm with moving window weather and load model. Electr. Pow. Syst. Res. 68(1), 47–59 (2004)

    Article  Google Scholar 

  9. Ghayekhlooa, M., Menhaj, M.B., Ghofrani, M.: A hybrid short-term load forecasting with a new data preprocessing framework. Electr. Power Syst. Res. 119, 138–148 (2015)

    Article  Google Scholar 

  10. Zhai, M.-Y.: A new method for short-term load forecasting based on fractal interpretation and wavelet analysis. Int. J. Electr. Power Energy Syst. 69, 241–245 (2015)

    Article  Google Scholar 

  11. Li, S., Wang, P., Goel, L.: Short-term load forecasting by wavelet transform and evolutionary extreme learning machine. Electr. Power Syst. Res. 122, 96–103 (2015)

    Article  Google Scholar 

  12. Chen, Y.H., Yang, Y., Liu, C.Q., Li, C.H., Li, L.: A hybrid application algorithm based on the support vector machine and artificial intelligence: an example of electric load forecasting. Appl. Math. Model. 39, 2617–2632 (2015)

    Article  MathSciNet  Google Scholar 

  13. Moon, J., Kim, Y., Son, M., Hwang, E.: Hybrid short-term load forecasting scheme using random forest and multilayer perceptron. Energies 11, 3283 (2018). https://doi.org/10.3390/en11123283

    Article  Google Scholar 

  14. Lahouar, A., Slama, J.B.H.: Day-ahead load forecast using random forest and expert input selection. Energy Convers. Manage. 103, 1040–1051 (2015)

    Article  Google Scholar 

  15. Arvanitidis, A.I., Bargiotas, D., Daskalopulu, A., Laitsos, V.M., Tsoukalas, L.H.: Enhanced short-term load forecasting using artificial neural networks. Energies 14, 7788 (2021). https://doi.org/10.3390/en14227788

    Article  Google Scholar 

  16. Wang, Y.Z., Zhang, N.Q., Chen, X.: A short-term residential load forecasting model based on LSTM recurrent neural network considering weather features. Energies 14, 2737 (2021). https://doi.org/10.3390/en14102737

    Article  Google Scholar 

  17. Machado, E., Pinto, T., Guedes, V., Morais, H.: Electrical load demand forecasting using feed-forward neural networks. Energies 14, 7644 (2021). https://doi.org/10.3390/en14227644

    Article  Google Scholar 

  18. Zhang, D.Y., Tong, H.X., Li, F., Xiang, L.Y., Ding, X.L.: An ultra-short-term electrical load forecasting method based on temperature-factor-weight and LSTM model. Energies 13, 4875 (2020). https://doi.org/10.3390/en13184875

    Article  Google Scholar 

  19. Tan, M., Yuan, S.P., Li, S.H., Su, Y.X., Li, H., He, F.: Ultra-short-term industrial power demand forecasting using LSTM based hybrid ensemble learning. IEEE Trans. Power Syst. 35(4), 2937–2948 (2020)

    Article  Google Scholar 

  20. Guan, C., Luh, P.B., Michel, L.D., Wang, Y., Friedland, P.B.: Very short-term load forecasting: wavelet neural networks with data pre-filtering. IEEE Trans. Power Syst. 28(1), 30–41 (2013)

    Article  Google Scholar 

  21. Morlet J.: Wave propagation and sampling theory. Geophysics (1982)

    Google Scholar 

  22. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN’95 - International Conference on Neural Networks, Perth, WA, Australia, vol. 4, pp. 1942–1948 (1995)

    Google Scholar 

  23. Zhan, Z., Zhang, J., Li, Y., Chung, H.: Adaptive particle swarm optimization. IEEE Trans. Syst. Man. Cybern. B 39(6), 1362–1381 (2018)

    Article  Google Scholar 

  24. Tang, Y., Wang, Z., Fang, J.: Parameters identification of unknown delayed genetic regulatory networks by a switching particles swarm optimization algorithm. Expert Syst. Appl. 38(6), 2523–2535 (2011)

    Article  Google Scholar 

  25. Clerc, M., Kennedy, J.: The particle swarm: explosion, stability, and convergence in a multi-dimensional complex space. IEEE Trans. Evol. Comput. 6(1), 58–73 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, L. (2024). A Novel Ultra Short-Term Load Forecasting Algorithm of a Small Microgrid Based on Support Vector Regression. In: Li, J., Zhang, B., Ying, Y. (eds) 6GN for Future Wireless Networks. 6GN 2023. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 553. Springer, Cham. https://doi.org/10.1007/978-3-031-53401-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53401-0_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53400-3

  • Online ISBN: 978-3-031-53401-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics