Skip to main content

A Hyper-heuristic for Dynamic Scheduling of Cyber-Physical Production Systems Using Incremental Learning

  • Conference paper
  • First Online:
Service Oriented, Holonic and Multi-Agent Manufacturing Systems for Industry of the Future (SOHOMA 2023)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1136))

  • 446 Accesses

Abstract

To ensure efficient dynamic manufacturing scheduling within a Cyber-Physical Production System (CPPS), it is essential to develop reactive control architectures. Heuristic-based optimization algorithms can provide this necessary reactivity and agility. In this paper, a hyper-heuristic is proposed. A set of atomic rules for resource selection are combined in a decisional strategy previously developed. The latter results from an optimization-simulation process. A new incremental learning mechanism is introduced in this article; it allows the system to evolve smoothly to integrate new events from the CPPS and its environment. A comparative study with a metaheuristic and heuristics on 56 instances, with family-dependent setup and processing times, demonstrates the interest of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/wbouazza/OpenData4Manufacturing.

References

  1. Bouazza, W., Sallez, Y., Trentesaux, D.: Dynamic scheduling of manufacturing systems: a product-driven approach using hyper-heuristics. Int. J. Comput. Integr. Manuf. 34, 641–665 (2021). https://doi.org/10.1080/0951192X.2021.1925969

    Article  Google Scholar 

  2. Bouazza, W., Sallez, Y., Trentesaux, D.: Toward efficient fms scheduling through rules combination using an optimization-simulation mechanism. In: Borangiu, T., Trentesaux, D., Leitão, P., Cardin, O., Joblot, L. (eds.) SOHOMA 2021. SCI, vol. 1034, pp. 559–571. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-99108-1_40

    Chapter  Google Scholar 

  3. Ansari, F., Glawar, R., Nemeth, T.: PriMa: a prescriptive maintenance model for cyber-physical production systems. Int. J. Comput. Integr. Manuf. 32, 482–503 (2019). https://doi.org/10.1080/0951192X.2019.1571236

    Article  Google Scholar 

  4. Liu, C., Jiang, P., Jiang, W.: Web-based digital twin modeling and remote control of cyber-physical production systems. Robot Comput. Integr. Manuf. 64, 101956 (2020). https://doi.org/10.1016/j.rcim.2020.101956

    Article  Google Scholar 

  5. Paredes-Astudillo, Y.A., Moreno, D., Vargas, A.-M., et al.: Human fatigue aware cyber-physical production system. In: 2020 IEEE International Conference on Human-Machine Systems (ICHMS), pp. 1–6. IEEE (2020)

    Google Scholar 

  6. Cardin, O.: Classification of cyber-physical production systems applications: proposition of an analysis framework. Comput. Ind. 104, 11–21 (2019). https://doi.org/10.1016/j.compind.2018.10.002

    Article  Google Scholar 

  7. Cardin, O., Trentesaux, D.: General concepts. In: Digitalization and Control of Industrial Cyber‐Physical Systems, pp 1–16. Wiley (2022)

    Google Scholar 

  8. Capawa Fotsoh, E., Mebarki, N., Castagna, P., Berruet, P.: A classification for reconfigurable manufacturing systems. In: Benyoucef, L. (ed.) Reconfigurable Manufacturing Systems: From Design to Implementation. Springer Series in Advanced Manufacturing. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-28782-5_2

    Chapter  Google Scholar 

  9. Framinan, J.M., Leisten, R., Ruiz García, R.: Manufacturing Scheduling Systems. Springer, London, London (2014). https://doi.org/10.1007/978-1-4471-6272-8

    Book  Google Scholar 

  10. Corning, P.A.: The re-emergence of “emergence”: a venerable concept in search of a theory. Complexity 7, 18–30 (2002). https://doi.org/10.1002/cplx.10043

    Article  MathSciNet  Google Scholar 

  11. Anuradha, V.P., Sumathi, D.: A survey on resource allocation strategies in cloud computing. In: International Conference on Information Communication and Embedded Systems (ICICES2014), pp. 1–7. IEEE (2014)

    Google Scholar 

  12. Branke, J., Nguyen, S., Pickardt, C.W., Zhang, M.: Automated design of production scheduling heuristics: a review. IEEE Trans. Evol. Comput. 20, 110–124 (2016). https://doi.org/10.1109/TEVC.2015.2429314

    Article  Google Scholar 

  13. Allahverdi, A.: The third comprehensive survey on scheduling problems with setup times/costs. Eur. J. Oper. Res. 246, 345–378 (2015). https://doi.org/10.1016/j.ejor.2015.04.004

    Article  MathSciNet  Google Scholar 

  14. Henderson, D., Jacobson, S.H., Johnson, A.W.: The Theory and Practice of Simulated Annealing. In: Handbook of Metaheuristics, pp. 287–319. Kluwer Academic Publishers, Boston (2006)

    Google Scholar 

  15. Jorapur, V.S., Puranik, V.S., Deshpande, A.S., Sharma, M.: A promising initial population based genetic algorithm for job shop scheduling problem. J. Softw. Eng. Appl. 09, 208–214 (2016). https://doi.org/10.4236/jsea.2016.95017

    Article  Google Scholar 

  16. Liou, C.D., Hsieh, Y.C.: A hybrid algorithm for the multi-stage flow shop group scheduling with sequence-dependent setup and transportation times. Int. J. Prod. Econ. 170, 258–267 (2015). https://doi.org/10.1016/j.ijpe.2015.10.002

    Article  Google Scholar 

  17. Burke, E.K., Hyde, M.R., Kendall, G., et al.: A classification of hyper-heuristic approaches: revisited. In: Gendreau, M., Potvin, J.Y. (eds.) Handbook of Metaheuristics. International Series in Operations Research & Management Science, 2nd edn., vol. 272, pp. 453–477. Springer, New York (2019). https://doi.org/10.1007/978-3-319-91086-4_14

  18. Burke, E., Hyde, M., Kendall, G.: A classification of hyper-heuristic approaches. In: Gendreau, M., Potvin, J.Y. (eds.) Handbook of Metaheuristics. International Series in Operations Research & Management Science, vol. 146, pp. 449–468. Springer, Boston (2010). https://doi.org/10.1007/978-1-4419-1665-5_15

    Chapter  Google Scholar 

  19. Vázquez Rodríguez, J.A., Petrovic, S., Salhi, A.: A combined meta-heuristic with hyper-heuristic approach to the scheduling of the hybrid flow shop with sequence dependent setup times and uniform machines. In: Proceedings of the 3rd Multidisciplinary International Conference on Scheduling: Theory and Applications, pp. 506–513 (2007)

    Google Scholar 

  20. Mascia, F., López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T.: From grammars to parameters: automatic iterated greedy design for the permutation flow-shop problem with weighted tardiness. In: Nicosia, G., Pardalos, P. (eds.) LION 2013. LNCS (LNAI and LNB), vol. 7997, pp. 321–334. Springer, Cham (2013). https://doi.org/10.1007/978-3-642-44973-4_36

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wassim Bouazza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bouazza, W., Sallez, Y., Cardin, O. (2024). A Hyper-heuristic for Dynamic Scheduling of Cyber-Physical Production Systems Using Incremental Learning. In: Borangiu, T., Trentesaux, D., Leitão, P., Berrah, L., Jimenez, JF. (eds) Service Oriented, Holonic and Multi-Agent Manufacturing Systems for Industry of the Future. SOHOMA 2023. Studies in Computational Intelligence, vol 1136. Springer, Cham. https://doi.org/10.1007/978-3-031-53445-4_17

Download citation

Publish with us

Policies and ethics