Abstract
To ensure efficient dynamic manufacturing scheduling within a Cyber-Physical Production System (CPPS), it is essential to develop reactive control architectures. Heuristic-based optimization algorithms can provide this necessary reactivity and agility. In this paper, a hyper-heuristic is proposed. A set of atomic rules for resource selection are combined in a decisional strategy previously developed. The latter results from an optimization-simulation process. A new incremental learning mechanism is introduced in this article; it allows the system to evolve smoothly to integrate new events from the CPPS and its environment. A comparative study with a metaheuristic and heuristics on 56 instances, with family-dependent setup and processing times, demonstrates the interest of the proposed approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bouazza, W., Sallez, Y., Trentesaux, D.: Dynamic scheduling of manufacturing systems: a product-driven approach using hyper-heuristics. Int. J. Comput. Integr. Manuf. 34, 641–665 (2021). https://doi.org/10.1080/0951192X.2021.1925969
Bouazza, W., Sallez, Y., Trentesaux, D.: Toward efficient fms scheduling through rules combination using an optimization-simulation mechanism. In: Borangiu, T., Trentesaux, D., Leitão, P., Cardin, O., Joblot, L. (eds.) SOHOMA 2021. SCI, vol. 1034, pp. 559–571. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-99108-1_40
Ansari, F., Glawar, R., Nemeth, T.: PriMa: a prescriptive maintenance model for cyber-physical production systems. Int. J. Comput. Integr. Manuf. 32, 482–503 (2019). https://doi.org/10.1080/0951192X.2019.1571236
Liu, C., Jiang, P., Jiang, W.: Web-based digital twin modeling and remote control of cyber-physical production systems. Robot Comput. Integr. Manuf. 64, 101956 (2020). https://doi.org/10.1016/j.rcim.2020.101956
Paredes-Astudillo, Y.A., Moreno, D., Vargas, A.-M., et al.: Human fatigue aware cyber-physical production system. In: 2020 IEEE International Conference on Human-Machine Systems (ICHMS), pp. 1–6. IEEE (2020)
Cardin, O.: Classification of cyber-physical production systems applications: proposition of an analysis framework. Comput. Ind. 104, 11–21 (2019). https://doi.org/10.1016/j.compind.2018.10.002
Cardin, O., Trentesaux, D.: General concepts. In: Digitalization and Control of Industrial Cyber‐Physical Systems, pp 1–16. Wiley (2022)
Capawa Fotsoh, E., Mebarki, N., Castagna, P., Berruet, P.: A classification for reconfigurable manufacturing systems. In: Benyoucef, L. (ed.) Reconfigurable Manufacturing Systems: From Design to Implementation. Springer Series in Advanced Manufacturing. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-28782-5_2
Framinan, J.M., Leisten, R., Ruiz García, R.: Manufacturing Scheduling Systems. Springer, London, London (2014). https://doi.org/10.1007/978-1-4471-6272-8
Corning, P.A.: The re-emergence of “emergence”: a venerable concept in search of a theory. Complexity 7, 18–30 (2002). https://doi.org/10.1002/cplx.10043
Anuradha, V.P., Sumathi, D.: A survey on resource allocation strategies in cloud computing. In: International Conference on Information Communication and Embedded Systems (ICICES2014), pp. 1–7. IEEE (2014)
Branke, J., Nguyen, S., Pickardt, C.W., Zhang, M.: Automated design of production scheduling heuristics: a review. IEEE Trans. Evol. Comput. 20, 110–124 (2016). https://doi.org/10.1109/TEVC.2015.2429314
Allahverdi, A.: The third comprehensive survey on scheduling problems with setup times/costs. Eur. J. Oper. Res. 246, 345–378 (2015). https://doi.org/10.1016/j.ejor.2015.04.004
Henderson, D., Jacobson, S.H., Johnson, A.W.: The Theory and Practice of Simulated Annealing. In: Handbook of Metaheuristics, pp. 287–319. Kluwer Academic Publishers, Boston (2006)
Jorapur, V.S., Puranik, V.S., Deshpande, A.S., Sharma, M.: A promising initial population based genetic algorithm for job shop scheduling problem. J. Softw. Eng. Appl. 09, 208–214 (2016). https://doi.org/10.4236/jsea.2016.95017
Liou, C.D., Hsieh, Y.C.: A hybrid algorithm for the multi-stage flow shop group scheduling with sequence-dependent setup and transportation times. Int. J. Prod. Econ. 170, 258–267 (2015). https://doi.org/10.1016/j.ijpe.2015.10.002
Burke, E.K., Hyde, M.R., Kendall, G., et al.: A classification of hyper-heuristic approaches: revisited. In: Gendreau, M., Potvin, J.Y. (eds.) Handbook of Metaheuristics. International Series in Operations Research & Management Science, 2nd edn., vol. 272, pp. 453–477. Springer, New York (2019). https://doi.org/10.1007/978-3-319-91086-4_14
Burke, E., Hyde, M., Kendall, G.: A classification of hyper-heuristic approaches. In: Gendreau, M., Potvin, J.Y. (eds.) Handbook of Metaheuristics. International Series in Operations Research & Management Science, vol. 146, pp. 449–468. Springer, Boston (2010). https://doi.org/10.1007/978-1-4419-1665-5_15
Vázquez Rodríguez, J.A., Petrovic, S., Salhi, A.: A combined meta-heuristic with hyper-heuristic approach to the scheduling of the hybrid flow shop with sequence dependent setup times and uniform machines. In: Proceedings of the 3rd Multidisciplinary International Conference on Scheduling: Theory and Applications, pp. 506–513 (2007)
Mascia, F., López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T.: From grammars to parameters: automatic iterated greedy design for the permutation flow-shop problem with weighted tardiness. In: Nicosia, G., Pardalos, P. (eds.) LION 2013. LNCS (LNAI and LNB), vol. 7997, pp. 321–334. Springer, Cham (2013). https://doi.org/10.1007/978-3-642-44973-4_36
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Bouazza, W., Sallez, Y., Cardin, O. (2024). A Hyper-heuristic for Dynamic Scheduling of Cyber-Physical Production Systems Using Incremental Learning. In: Borangiu, T., Trentesaux, D., Leitão, P., Berrah, L., Jimenez, JF. (eds) Service Oriented, Holonic and Multi-Agent Manufacturing Systems for Industry of the Future. SOHOMA 2023. Studies in Computational Intelligence, vol 1136. Springer, Cham. https://doi.org/10.1007/978-3-031-53445-4_17
Download citation
DOI: https://doi.org/10.1007/978-3-031-53445-4_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-53444-7
Online ISBN: 978-3-031-53445-4
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)