Skip to main content

A Framework for Enhancing Human-Agent Interaction in Cyber-Physical Systems: OCRA Measurement Perspective

  • Conference paper
  • First Online:
Service Oriented, Holonic and Multi-Agent Manufacturing Systems for Industry of the Future (SOHOMA 2023)

Abstract

The seamless link between physical and cyber components becomes more important as the industry develops and integrates concepts such as Industry 5.0. Traditionally, frameworks on Cyber-Physical Systems overlook the significance of human factors, leading to lower performance and reduced user satisfaction. This paper shows an approach of a CPS that integrates human engagement by assessing the ergonomic impact of repeated activities with an OCRA measurement. The framework proposes a dynamic control architecture that adapts task planning and workloads rules to improve both human and system performance by continually monitoring the OCRA index. This method lowers the possibility of physical strain by ensuring that jobs are assigned according to human capacities. The proposed approach was evaluated in a simulated scenario of a flexible manufacturing system using multi-agent systems paradigm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahangar, N.K., Khalili, M., Tayebi, H.: The three-objective optimization model of flexible workshop scheduling problem for minimizing work completion time, work delay time, and energy consumption. TECH. J. 15, 76–83 (2021)

    Google Scholar 

  2. Melesse, T.Y., Di Pasquale, V., Riemma, S.: Digital twin models in industrial operations: a systematic literature review. In: International Conference on Industry 4.0 and Smart Manufacturing, vol. 42, pp. 267–272 (2020)

    Google Scholar 

  3. de Paula Ferreira, W., Armellini, F., De Santa-Eulalia, L.A.: Simulation in industry 4.0: a state-of-the-art review. Comput. Ind. Eng. 149, 106868 (2020)

    Google Scholar 

  4. Ghobakhloo, M., Iranmanesh, M., Tseng, M.-L., Grybauskas, A., Stefanini, A., Amran, A.: Behind the definition of Industry 5.0: a systematic review of technologies, principles, components, and values. J. Ind. Prod. Eng. 1–16 (2023)

    Google Scholar 

  5. Grabowska, S., Saniuk, S., Gajdzik, B.: Industry 5.0: improving humanization and sustainability of industry 4.0. Scientometrics 127(6), 3117–3144 (2022)

    Google Scholar 

  6. Nikolakis, N., Maratos, V., Makris, S.: A cyber physical system (CPS) approach for safe human-robot collaboration in a shared workplace. Robot. Comput. Integr. Manuf. 56, 233–243 (2019)

    Article  Google Scholar 

  7. Kotronis, C., Routis, I., Tsadimas, A., Nikolaidou, M., Anagnostopoulos, D.: A model-based approach for the design of cyber-physical human systems emphasizing human concerns. In: Proceedings - 2019 IEEE ICIOT 2019, pp. 100–107 (2019)

    Google Scholar 

  8. Ruiz Garcia, M.A., Rojas, R., Gualtieri, L., Rauch, E., Matt, D.: A human-in-the-loop cyber-physical system for collaborative assembly in smart manufacturing. Procedia CIRP 81, 600–605. Elsevier B.V. (2019)

    Google Scholar 

  9. Zhang, C., Zhou, G., Ma, D., Wang, R., Xiao, J., Zhao, D.: A deep learning-enabled human-cyber-physical fusion method towards human-robot collaborative assembly. Robot. Comput. Integr. Manuf. 83, 102571 (2023)

    Article  Google Scholar 

  10. Benotsmane, R., Kovács, G., Dudás, L.: Economic, social impacts and operation of smart factories in industry 4.0 focusing on simulation and artificial intelligence of collaborating robots. Soc. Sci. 8(5) (2019)

    Google Scholar 

  11. Bousdekis, A., Apostolou, D., Mentzas, G.: A human cyber physical system framework for operator 4.0 – artificial intelligence symbiosis. Manuf. Lett. 25, 10–15 (2020)

    Google Scholar 

  12. Celaschi, F.: Advanced design-driven approaches for an industry 4.0 framework: the human-centred dimension of the digital industrial revolution the industry 4.0 phenomenon 1. Strateg. Des. Res. J. 10(2), 97–104 (2017)

    Google Scholar 

  13. Destouet, C., Tlahig, H., Bettayeb, B., Mazari, B.: Flexible job shop scheduling problem under industry 5.0: a survey on human reintegration, environmental consideration and resilience improvement. J. Manuf. Syst. 67, 155–173 (2023)

    Google Scholar 

  14. Şenyiğit, E., Atici, U., Şenol, M.B.: Effects of OCRA parameters and learning rate on machine scheduling. Cent. Eur. J. Oper. Res. 30(3), 941–959 (2022)

    Article  Google Scholar 

  15. Antons, O., Arlinghaus, J.C.: Adaptive self-learning distributed and centralized control approaches for smart factories. Procedia CIRP 104, 1577–1582 (2021)

    Article  Google Scholar 

  16. Blunck, H., Armbruster, D., Bendul, J., Hütt, M.-T.: The balance of autonomous and centralized control in scheduling problems. Appl. Netw. Sci. 3(1), 16 (2018)

    Article  Google Scholar 

  17. Overmars, A.H., Toncich, D.J.: Hybrid FMS control architectures based on holonic principles. Int. J. Flex. Manuf. Syst. 8(3), 263–278 (1996)

    Article  Google Scholar 

  18. Paredes-Astudillo, Y.A., Jimenez, J.F., Zambrano-Rey, G., Trentesaux, D.: Human-machine cooperation for the distributed control of a hybrid control architecture. Stud. Comput. Intell. 853, 98–110 (2020)

    Article  Google Scholar 

  19. Jimenez, J.F., Bekrar, A., Zambrano-Rey, G., Trentesaux, D., Leitão, P.: Pollux: a dynamic hybrid control architecture for flexible job shop systems. Int. J. Prod. Res. 55(15), 4229–4247 (2017)

    Article  Google Scholar 

  20. Rey, G.Z., Pach, C., Aissani, N., Bekrar, A., Berger, T., Trentesaux, D.: The control of myopic behavior in semi-heterarchical production systems: a holonic framework. Eng. Appl. Artif. Intell. 26(2), 800–817 (2013)

    Google Scholar 

  21. Pach, C., Berger, T., Sallez, Y., Trentesaux, D.: Reactive control of overall power consumption in flexible manufacturing systems scheduling: a potential fields model. Control. Eng. Pract. 44, 193–208 (2015)

    Article  Google Scholar 

  22. Diego-Mas, J.A.: Evaluación del riesgo por movimientos repetitivos mediante el Check List Ocra, Ergonautas, Universidad Politécnica de Valencia (2015)

    Google Scholar 

  23. Occhipinti, E.: OCRA: a concise index for the assessment of exposure to repetitive movements of the upper limbs. Ergonomics 41(9), 1290–1311 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian-Mateo Meza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Meza, SM., Perez, MJ., Guerra-Cruz, A., Paredes-Astudillo, Y.A., Jimenez, JF. (2024). A Framework for Enhancing Human-Agent Interaction in Cyber-Physical Systems: OCRA Measurement Perspective. In: Borangiu, T., Trentesaux, D., Leitão, P., Berrah, L., Jimenez, JF. (eds) Service Oriented, Holonic and Multi-Agent Manufacturing Systems for Industry of the Future. SOHOMA 2023. Studies in Computational Intelligence, vol 1136. Springer, Cham. https://doi.org/10.1007/978-3-031-53445-4_20

Download citation

Publish with us

Policies and ethics