Skip to main content

Challenges and Requirements for Improving Overall Equipment Effectiveness with Intelligent Manufacturing Technology in Special Machinery Engineering

  • Conference paper
  • First Online:
Service Oriented, Holonic and Multi-Agent Manufacturing Systems for Industry of the Future (SOHOMA 2023)

Abstract

This paper presents the results of a study conducted to investigate the reasons why advanced, intelligent manufacturing approaches, such as service-orientation, multi-agent systems, artificial intelligence, and digital twins, are not widely used in the field of special manufacturing machinery. The study was carried out among special machinery engineering companies, with a focus on improving availability and overall equipment effectiveness. The observations made during the study revealed several challenges and obstacles that hinder the adoption of these technologies. Based on the observations made during the study, the paper proposes a set of requirements that can facilitate the adoption of intelligent manufacturing approaches to improve the overall equipment efficiency of special manufacturing machinery in a practical manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    An empty run of manufacturing machines is used to finalize production without creating production waste for products already started and located on the machine but not to start the manufacturing of new ones.

References

  1. Trentesaux, D., Borangiu, T., Thomas, A.: Emerging ICT concepts for smart, safe and sustainable industrial systems. Comput. Ind.. Ind. 81, 1–10 (2016)

    Article  Google Scholar 

  2. Tao, F., Qi, Q.: New IT driven service-oriented smart manufacturing: framework and characteristics. IEEE Trans. Syst. Man Cybern, Syst. 49, 81–91 (2019)

    Google Scholar 

  3. Chaudhari, R., Shah, V., Khanna, S., Abhishek, K., Vora, J.: A review on key technologies of industry 4.0 in manufacturing sectors. In: Parwani, A.K., Ramkumar, P.L., Abhishek, K., Yadav, S.K. (eds.) Recent Advances in Mechanical Infrastructure. LNITI, pp. 417–426. Springer, Singapore (2022). https://doi.org/10.1007/978-981-16-7660-4_37

    Chapter  Google Scholar 

  4. Cardin, O.: Classification of cyber-physical production systems applications: proposition of an analysis framework. Comput. Ind.. Ind. 104, 11–21 (2019)

    Article  Google Scholar 

  5. Karnouskos, S., Ribeiro, L., Leitão, P., Luder, A., Vogel-Heuser, B.: Key directions for industrial agent based cyber-physical production systems. In: 2019 IEEE International Conference on Industrial Cyber Physical Systems (ICPS), pp. 17–22. IEEE (2019)

    Google Scholar 

  6. Jiang, Z.-Z., Feng, G., Yi, Z., Guo, X.: Service-oriented manufacturing: a literature review and future research directions. Front. Eng. Manag. 9, 71–88 (2022)

    Article  Google Scholar 

  7. Bao, G., Ma, L., Yi, X.: Recent advances on cooperative control of heterogeneous multi-agent systems subject to constraints: a survey. Syst. Sci. Control Eng. 10, 539–551 (2022)

    Article  Google Scholar 

  8. Răileanu, S., Borangiu, T.: A review of multi-agent systems used in industrial applications. In: Borangiu, T., Trentesaux, D., Leitão, P. (eds.) Service Oriented, Holonic and Multi-Agent Manufacturing Systems for Industry of the Future, pp. 3–22. Springer International Publishing, Cham (2023). https://doi.org/10.1007/978-3-031-24291-5_1

    Chapter  Google Scholar 

  9. Nti, I.K., Adekoya, A.F., Weyori, B.A., Nyarko-Boateng, O.: Applications of artificial intelligence in engineering and manufacturing: a systematic review. J. Intell. Manuf.Intell. Manuf. 33, 1581–1601 (2022)

    Article  Google Scholar 

  10. Lee, J., Singh, J., Azamfar, M.: Industrial Artificial Intelligence (2019). arXiv:1908.02150

  11. Ashtari Talkhestani, B., et al.: An architecture of an intelligent digital twin in a cyber-physical production system. at - Automatisierungstechnik 67, 762–782 (2019)

    Google Scholar 

  12. Jacoby, M., Usländer, T.: Digital twin and internet of things - current standards landscape. Appl. Sci. 10, 6519 (2020)

    Article  Google Scholar 

  13. Piardi, L., Leitão, P., Costa, P., De Oliveira, A.S.: Fault-tolerance in cyber-physical systems using holonic multi-agent systems. In: Borangiu, T., Trentesaux, D., Leitão, P., Cardin, O., Joblot, L. (eds.) Service Oriented, Holonic and Multi-agent Manufacturing Systems for Industry of the Future, pp. 51–63. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-99108-1_4

    Chapter  Google Scholar 

  14. Matei, A., Pirvu, B.C., Petruşe, R.E., Candea, C., Zamfirescu, B.C.: Designing a multi-agent control system for a reconfigurable manufacturing system. In: Borangiu, T., Trentesaux, D., Leitão, P. (eds.) Service Oriented, Holonic and Multi-Agent Manufacturing Systems for Industry of the Future, SOHOMA 2022, vol. 1083, pp. 434–445. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-24291-5_34

    Chapter  Google Scholar 

  15. Legat, C., Vogel-Heuser, B.: A configurable partial-order planning approach for field level operation strategies of PLC-based industry 4.0 automated manufacturing systems. Eng. Appl. Artif. Intell. 66, 128–144 (2017)

    Google Scholar 

  16. Napoleone, A., Negri, E., Macchi, M., Pozzetti, A.: How the technologies underlying cyber-physical systems support the reconfigurability capability in manufacturing: a literature review. Int. J. Prod. Res. 61, 3122–3144 (2023)

    Article  Google Scholar 

  17. Aivaliotis, P., Georgoulias, K., Chryssolouris, G.: The use of digital twin for predictive maintenance in manufacturing. Int. J. Comput. Integr. Manuf.Comput. Integr. Manuf. 32, 1067–1080 (2019)

    Article  Google Scholar 

  18. Iqbal, R., Maniak, T., Doctor, F., Karyotis, C.: Fault detection and isolation in industrial processes using deep learning approaches. IEEE Trans. Ind. Inf. 15, 3077–3084 (2019)

    Article  Google Scholar 

  19. Mattioli, J., Perico, P., Robic, P.-O.: Improve total production maintenance with artificial intelligence. In: 2020 Third International Conference on Artificial Intelligence for Industries (AI4I), pp. 56–59. IEEE (2020)

    Google Scholar 

  20. Pomorski, T.: Managing overall equipment effectiveness [OEE] to optimize factory performance. In: 1997 IEEE International Symposium on Semiconductor Manufacturing Conference, pp. A33–A36. IEEE (1997)

    Google Scholar 

  21. Chaurey, S., Kalpande, S.D., Gupta, R.C., Toke, L.K.: A review on the identification of total productive maintenance critical success factors for effective implementation in the manufacturing sector. JQME 29, 114–135 (2023)

    Article  Google Scholar 

  22. Buettner, R., Breitenbach, J., Wannenwetsch, K., Ostermann, I., Priel, R.: A systematic literature review of virtual and augmented reality applications for maintenance in manufacturing. In: 2022 IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC), pp. 545–552. IEEE (2022)

    Google Scholar 

  23. Swanson, L.: Linking maintenance strategies to performance. Int. J. Prod. Econ. 70, 237–244 (2001)

    Article  Google Scholar 

  24. Wan, J., et al.: A manufacturing big data solution for active preventive maintenance. IEEE Trans. Ind. Inf. 13, 2039–2047 (2017)

    Article  Google Scholar 

  25. Basri, E.I., Abdul Razak, I.H., Ab-Samat, H., Kamaruddin, S.: Preventive maintenance (PM) planning: a review. JQME. 23, 114–143 (2017)

    Article  Google Scholar 

  26. Zonta, T., Da Costa, C.A., Da Rosa Righi, R., De Lima, M.J., Da Trindade, E.S., Li, G.P.: Predictive maintenance in the Industry 4.0: a systematic literature review. Comput. Ind. Eng. 150, 106889 (2020)

    Google Scholar 

  27. Hubauer, T.M., Legat, C., Seitz, C.: Empowering adaptive manufacturing with interactive diagnostics: a multi-agent approach. In: Demazeau, Y., Pěchoucěk, M., Corchado, J.M., Pérez, J.B. (eds.) Advances on Practical Applications of Agents and Multiagent Systems, pp. 47–56. Springer, Berlin (2011). https://doi.org/10.1007/978-3-642-19875-5_6

    Chapter  Google Scholar 

  28. Hossayni, H., Khan, I., Aazam, M., Taleghani-Isfahani, A., Crespi, N.: SemKoRe: improving machine maintenance in industrial IoT with semantic knowledge graphs. Appl. Sci. 10, 6325 (2020)

    Article  Google Scholar 

  29. Simonson, R.J., Keebler, J.R., Blickensderfer, E.L., Besuijen, R.: Impact of alarm management and automation on abnormal operations: a human-in-the-loop simulation study. Appl. Ergon. 100, 103670 (2022)

    Article  Google Scholar 

  30. Tamascelli, N., Paltrinieri, N., Cozzani, V.: Predicting chattering alarms: a machine Learning approach. Comput. Chem. Eng.. Chem. Eng. 143, 107122 (2020)

    Article  Google Scholar 

  31. Wilch, J., et al.: A distributed framework for knowledge-driven root-cause analysis on evolving alarm data – an industrial case study. IEEE Robot. Autom. Lett., 1–8 (2023)

    Google Scholar 

  32. Kottre, A., Schöler, T., Legat, C.: Applying engineering knowledge in alarm flood reduction to reduce machine downtime. IFAC-PapersOnLine. 55, 54–59 (2022)

    Article  Google Scholar 

  33. Coleman, C., Damodaran, S., Deuel, E.: Predictive maintenance and the smart factory. Deloitte (2017)

    Google Scholar 

  34. Vogel-Heuser, B., Fay, A., Schaefer, I., Tichy, M.: Evolution of software in automated production systems: challenges and research directions. J. Syst. Softw.Softw. 110, 54–84 (2015)

    Article  Google Scholar 

  35. Sony, M., Naik, S.: Industry 4.0 integration with socio-technical systems theory: a systematic review and proposed theoretical model. Technol. Soc. 61, 101248 (2020)

    Google Scholar 

  36. Davies, R., Coole, T., Smith, A.: Review of socio-technical considerations to ensure successful implementation of industry 4.0. Procedia Manuf. 11, 1288–1295 (2017)

    Google Scholar 

  37. ANSI/ISA-18.2 - Management of Alarm Systems for the Process Industries (2016)

    Google Scholar 

  38. Dunn, D.G., Sands, N.P.: ISA-SP18 - alarm systems management and design guide. In: ISA EXPO (2005)

    Google Scholar 

  39. Fischer, J., Vogel-Heuser, B., Huber, C., Felger, M., Bengel, M.: Reuse assessment of IEC 61131–3 control software modules using metrics – an industrial case study. In: 2021 IEEE 19th International Conference on Industrial Informatics, pp. 1–8. IEEE (2021)

    Google Scholar 

  40. Askhøj, C., Christensen, C.K.F., Mortensen, N.H.: Cross domain modularization tool: mechanics, electronics, and software. Concurr. Eng.. Eng. 29, 221–235 (2021)

    Article  Google Scholar 

  41. Sharma, S., Fadhlillah, H.S., Gutiérrez Fernández, A.M., Rabiser, R., Zoitl, A.: Modularization technique to support software variability in cyber-physical production systems. In: Proceedings of the 17th International Working Conference on Variability Modelling of Software-Intensive Systems, pp. 71–76. ACM (2023)

    Google Scholar 

  42. Homay, A., Wollschlaeger, M., De Sousa, M., Zoitl, A.: Impact of modularization and coupling on the complexity of industrial control and automation systems. In: 2022 IEEE 27th International Conference on Emerging Technologies and Factory Automation (ETFA), pp. 1–7. IEEE (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Legat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Legat, C., Schöler, T., Kottre, A. (2024). Challenges and Requirements for Improving Overall Equipment Effectiveness with Intelligent Manufacturing Technology in Special Machinery Engineering. In: Borangiu, T., Trentesaux, D., Leitão, P., Berrah, L., Jimenez, JF. (eds) Service Oriented, Holonic and Multi-Agent Manufacturing Systems for Industry of the Future. SOHOMA 2023. Studies in Computational Intelligence, vol 1136. Springer, Cham. https://doi.org/10.1007/978-3-031-53445-4_27

Download citation

Publish with us

Policies and ethics