Skip to main content

Energy Agents for Energy Load Profiling in Modular Skill-Based Production Environments

  • Conference paper
  • First Online:
Service Oriented, Holonic and Multi-Agent Manufacturing Systems for Industry of the Future (SOHOMA 2023)

Abstract

Modular skill-based production environments provide a high flexibility to fulfil various requirements in manufacturing like the production of individualized products or the selection of alternative production chains in case of unforeseen disturbances. Within these complex and changing production environments, there is a demand for transparency on the energy consumption and related energy costs for production processes, so that these can be considered during planning and monitoring of machine skills. However, the ability to manufacture products by using such flexible production processes leads to various constellations in which it is difficult to identify and map the related energy consumption of production skills. The objective of this paper is to develop a concept that, in the context of a multi-agent distributed production control system, allows energy agents to interact with resource agents to access energy metering data for energy load profiling during the skill execution in production. A special focus is put on how the functions of energy agents can support a methodical creation of energy load profiles on the granular level of skills. The realization and results are presented on a real-world demonstrator of the SmartFactory-KL as part of a skill-based production environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kagermann, H., Wahlster, W., Helbig, J.: Recommendations for implementing the strategic initiative Industrie 4.0: Final report of the Industrie 4.0 Working Group. Forschungsunion: Berlin, Germany (2013)

    Google Scholar 

  2. Ilsen, R., Aurich, J.C.: An agent-based factory simulation tool to assess energy consumption in decentralized manufacturing systems: agent types and their tasks. In Applied Mechanics and Materials, vol. 869, pp. 174–179. Trans Tech Publications Ltd. (2017)

    Google Scholar 

  3. Diedrich, C., et al.: Information model for capabilities, skills & services. Technical report (2022)

    Google Scholar 

  4. Ruskowski, M., et al.: Production bots für production level 4: skill-basierte systeme für die produktion der zukunft. atp magazin 62(9), 62–71 (2020)

    Google Scholar 

  5. Gorecky, D., Weyer, S.: SmartFactoryKL System Architecture for Industrie 4.0 Production Plants. Technology Initiative SmartFactory KL eV, white paper SF-1.1. 4 (2016)

    Google Scholar 

  6. Kolberg, D., et al.: SmartFactoryKL System Architecture for Industrie 4.0 Production Plants. SmartFactoryKL. Whitepaper SF-1.2. 4 (2018)

    Google Scholar 

  7. Bayha, A., Bock, J., Boss, B., Diedrich, C., Malakuti, S.: Describing capabilities of industrie 4.0 components. German Electrical and Electronics Manufacturers Association, Frankfurt am Main, Germany (2020)

    Google Scholar 

  8. Weser, M., Bock, J., Schmitt, S., Perzylo, A., Evers, K.: An ontology-based metamodel for capability descriptions. In 2020 25th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), 1, 1679–1686. IEEE (2020)

    Google Scholar 

  9. Motsch, W., Dorofeev, K., Gerber, K., Knoch, S., David, A., Ruskowski, M.: Concept for modeling and usage of functionally described capabilities and skills. In: 2021 26th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), pp. 1–8. IEEE (2021)

    Google Scholar 

  10. Pfrommer, J., Stogl, D., Aleksandrov, K., Escaida Navarro, S., Hein, B., Beyerer, J.: Plug & produce by modelling skills and service-oriented orchestration of reconfigurable manufacturing systems. at-Automatisierungstechnik. 63(10), 790–800 (2015)

    Google Scholar 

  11. Cabral, J., Cheng, C.-H., Dorofeev K., Profanter, S., Zoitl, A.: Embedded Skill Executor and Self-Adaptation Core (2018). https://www.openmos.eu/documents/17/openMOS_D2-4.pdf. Accessed 03 Sept 2023

  12. Zimmermann, P., Axmann, E., Brandenbourger, B., Dorofeev, K., Mankowski, A., Zanini, P.: Skill-based engineering and control on field-device-level with opc ua. In: 2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), pp. 1101–1108. IEEE (2019)

    Google Scholar 

  13. Bergweiler, S., Hamm, S., Hermann, J., Plociennik, C., Ruskowski, M., Wagner, A.: Production Level 4 - Der Weg zur zukunftssicheren und verlässlichen Produktion (2022). https://smartfactory.de/wp-content/uploads/2022/05/SF_Whitepaper-Production-Level-4_WEB.pdf. Accessed 03 Sept 2023

  14. Barton, K., Maturana, F., Tilbury, D.: Closing the loop in IoT-enabled manufacturing systems: challenges and opportunities. In: 2018 Annual American Control Conference (ACC), pp. 5503–5509. IEEE (2018)

    Google Scholar 

  15. Wooldridge, M.: An Introduction to Multiagent Systems. John Wiley (2009)

    Google Scholar 

  16. Dorri, A., Kanhere, S.S., Jurdak, R.: Multi-Agent systems: a survey. IEEE. Access 6, 28573–28593 (2018)

    Article  Google Scholar 

  17. Ilsen, R., Meissner, H., Aurich, J.C.: Virtual test field for sustainability assessment of cybertronic production systems. In: International Manufacturing Science and Engineering Conference, vol. 56833, pp. V002T05A001. American Society of Mechanical Engineers (2015)

    Google Scholar 

  18. Cruz Salazar, L.A., Ryashentseva, D., Lüder, A., Vogel-Heuser, B.: Cyber-physical production systems architecture based on multi-agent’s design pattern—comparison of selected approaches mapping four agent patterns. Int. J. Adv. Manuf. Technol. 105(9), 4005–4034 (2019)

    Article  Google Scholar 

  19. Komesker, S., Motsch, W., Popper, J., Sidorenko, A., Wagner, A., Ruskowski, M.: Enabling a multi-agent system for resilient production flow in modular production systems. Procedia CIRP 107, 991–998 (2022)

    Article  Google Scholar 

  20. Vogel-Heuser, B., Ocker, F., Scheuer, T.: An approach for leveraging digital twins in agent-based production systems. at-Automatisierungstechnik 69(12), 1026–1039 (2021)

    Google Scholar 

  21. Jungbluth, S., et al.: Dynamic replanning using multi-agent systems and asset administration shells. In: 2022 IEEE 27th International Conference on Emerging Technologies and Factory Automation (ETFA), pp. 1–8. IEEE (2022)

    Google Scholar 

  22. Verein Deutscher Ingenieure: VDI/VDE Guideline 2193-1. Language for I4.0 components - Structure of messages (2020)

    Google Scholar 

  23. Giret, A., Botti, V.: Holons and agents. J. Intell. Manuf. 15, 645–659 (2004)

    Article  Google Scholar 

  24. Sidorenko, A., Motsch, W., Wagner, A.: User manuals on accessing and using the MAS. Zenodo (2022)

    Google Scholar 

  25. Sidorenko, A., Motsch, W., Van Bekkum, M., Nikolakis, N., Alexopoulos, K., Wagner, A.: The MAS4AI framework for human-centered agile and smart manufacturing. Front. Artif. Intell. 6, 1241522 (2023)

    Article  Google Scholar 

  26. Verein Deutscher Ingenieure. VDI/VDE Guideline 2653-1. Multi-Agent systems in industrial automation - Fundamentals (2010)

    Google Scholar 

  27. Vogel-Heuser, B., et al.: Agentenmuster für flexible und rekonfigurierbare Industrie 4.0/CPS-Automatisierungs-bzw. Energiesysteme. In: VDI-Kongress Automation 2018 (2018)

    Google Scholar 

  28. Teiwes, H., Blume, S., Herrmann, C., Rössinger, M., Thiede, S.: Energy load profile analysis on machine level. Procedia CIRP 69, 271–276 (2018)

    Article  Google Scholar 

  29. Chu, K.C., Kaifuku, K., Saitou, K.: Optimal integration of alternative energy sources in production systems with customer demand forecast. IEEE Trans. Autom. Sci. Eng. 13(1), 206–214 (2015)

    Article  Google Scholar 

  30. Sauer, J.: Scheduling regarding energy efficiency. Tagung KI (2016)

    Google Scholar 

  31. Motsch, W., Sidorenko, A., David, A., Rübel, P., Wagner, A., Ruskowski, M.: Electrical energy consumption interface in modular skill-based production systems with the asset administration shell. Procedia Manuf. 55, 535–542 (2021)

    Article  Google Scholar 

  32. Bedenbender, H., et al.: Examples of the asset administration shell for industrie 4.0 components–basic part. ZVEI white paper (2017)

    Google Scholar 

  33. Technologie-Initiative SmartFactory KL e.V. Neue Infrastruktur (2019). https://smartfactory.de/wp-content/uploads/2019/03/SF_BR_HM19_Infrastruktur.pdf. Accessed 03 Sept 2023

  34. Motsch, W., David, A., Sivalingam, K., Wagner, A., Ruskowski, M.: Approach for dynamic price-based demand side management in cyber-physical production systems. Procedia Manuf. 51, 1748–1754 (2020)

    Article  Google Scholar 

  35. Motsch, W., Sidorenko, A., Jungbluth, S., Hengel, K. Wagner, A.: Smart Factory Testbed Setup – Final Results. Zenodo (2023)

    Google Scholar 

  36. Rodriguez, S., Gaud, N., Galland, S.: SARL: a general-purpose agent-oriented programming language. In: 2014 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT), vol. 3, pp. 103–110. IEEE (2014)

    Google Scholar 

Download references

Acknowledgment

This work was supported by the European Union under the “Horizon 2020” research program (Grant no. 957204) within the project “Multi Agent Systems for Artificial Intelligence” (MAS4AI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Motsch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Motsch, W. et al. (2024). Energy Agents for Energy Load Profiling in Modular Skill-Based Production Environments. In: Borangiu, T., Trentesaux, D., Leitão, P., Berrah, L., Jimenez, JF. (eds) Service Oriented, Holonic and Multi-Agent Manufacturing Systems for Industry of the Future. SOHOMA 2023. Studies in Computational Intelligence, vol 1136. Springer, Cham. https://doi.org/10.1007/978-3-031-53445-4_33

Download citation

Publish with us

Policies and ethics