Abstract
Modular skill-based production environments provide a high flexibility to fulfil various requirements in manufacturing like the production of individualized products or the selection of alternative production chains in case of unforeseen disturbances. Within these complex and changing production environments, there is a demand for transparency on the energy consumption and related energy costs for production processes, so that these can be considered during planning and monitoring of machine skills. However, the ability to manufacture products by using such flexible production processes leads to various constellations in which it is difficult to identify and map the related energy consumption of production skills. The objective of this paper is to develop a concept that, in the context of a multi-agent distributed production control system, allows energy agents to interact with resource agents to access energy metering data for energy load profiling during the skill execution in production. A special focus is put on how the functions of energy agents can support a methodical creation of energy load profiles on the granular level of skills. The realization and results are presented on a real-world demonstrator of the SmartFactory-KL as part of a skill-based production environment.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Kagermann, H., Wahlster, W., Helbig, J.: Recommendations for implementing the strategic initiative Industrie 4.0: Final report of the Industrie 4.0 Working Group. Forschungsunion: Berlin, Germany (2013)
Ilsen, R., Aurich, J.C.: An agent-based factory simulation tool to assess energy consumption in decentralized manufacturing systems: agent types and their tasks. In Applied Mechanics and Materials, vol. 869, pp. 174–179. Trans Tech Publications Ltd. (2017)
Diedrich, C., et al.: Information model for capabilities, skills & services. Technical report (2022)
Ruskowski, M., et al.: Production bots für production level 4: skill-basierte systeme für die produktion der zukunft. atp magazin 62(9), 62–71 (2020)
Gorecky, D., Weyer, S.: SmartFactoryKL System Architecture for Industrie 4.0 Production Plants. Technology Initiative SmartFactory KL eV, white paper SF-1.1. 4 (2016)
Kolberg, D., et al.: SmartFactoryKL System Architecture for Industrie 4.0 Production Plants. SmartFactoryKL. Whitepaper SF-1.2. 4 (2018)
Bayha, A., Bock, J., Boss, B., Diedrich, C., Malakuti, S.: Describing capabilities of industrie 4.0 components. German Electrical and Electronics Manufacturers Association, Frankfurt am Main, Germany (2020)
Weser, M., Bock, J., Schmitt, S., Perzylo, A., Evers, K.: An ontology-based metamodel for capability descriptions. In 2020 25th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), 1, 1679–1686. IEEE (2020)
Motsch, W., Dorofeev, K., Gerber, K., Knoch, S., David, A., Ruskowski, M.: Concept for modeling and usage of functionally described capabilities and skills. In: 2021 26th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), pp. 1–8. IEEE (2021)
Pfrommer, J., Stogl, D., Aleksandrov, K., Escaida Navarro, S., Hein, B., Beyerer, J.: Plug & produce by modelling skills and service-oriented orchestration of reconfigurable manufacturing systems. at-Automatisierungstechnik. 63(10), 790–800 (2015)
Cabral, J., Cheng, C.-H., Dorofeev K., Profanter, S., Zoitl, A.: Embedded Skill Executor and Self-Adaptation Core (2018). https://www.openmos.eu/documents/17/openMOS_D2-4.pdf. Accessed 03 Sept 2023
Zimmermann, P., Axmann, E., Brandenbourger, B., Dorofeev, K., Mankowski, A., Zanini, P.: Skill-based engineering and control on field-device-level with opc ua. In: 2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), pp. 1101–1108. IEEE (2019)
Bergweiler, S., Hamm, S., Hermann, J., Plociennik, C., Ruskowski, M., Wagner, A.: Production Level 4 - Der Weg zur zukunftssicheren und verlässlichen Produktion (2022). https://smartfactory.de/wp-content/uploads/2022/05/SF_Whitepaper-Production-Level-4_WEB.pdf. Accessed 03 Sept 2023
Barton, K., Maturana, F., Tilbury, D.: Closing the loop in IoT-enabled manufacturing systems: challenges and opportunities. In: 2018 Annual American Control Conference (ACC), pp. 5503–5509. IEEE (2018)
Wooldridge, M.: An Introduction to Multiagent Systems. John Wiley (2009)
Dorri, A., Kanhere, S.S., Jurdak, R.: Multi-Agent systems: a survey. IEEE. Access 6, 28573–28593 (2018)
Ilsen, R., Meissner, H., Aurich, J.C.: Virtual test field for sustainability assessment of cybertronic production systems. In: International Manufacturing Science and Engineering Conference, vol. 56833, pp. V002T05A001. American Society of Mechanical Engineers (2015)
Cruz Salazar, L.A., Ryashentseva, D., Lüder, A., Vogel-Heuser, B.: Cyber-physical production systems architecture based on multi-agent’s design pattern—comparison of selected approaches mapping four agent patterns. Int. J. Adv. Manuf. Technol. 105(9), 4005–4034 (2019)
Komesker, S., Motsch, W., Popper, J., Sidorenko, A., Wagner, A., Ruskowski, M.: Enabling a multi-agent system for resilient production flow in modular production systems. Procedia CIRP 107, 991–998 (2022)
Vogel-Heuser, B., Ocker, F., Scheuer, T.: An approach for leveraging digital twins in agent-based production systems. at-Automatisierungstechnik 69(12), 1026–1039 (2021)
Jungbluth, S., et al.: Dynamic replanning using multi-agent systems and asset administration shells. In: 2022 IEEE 27th International Conference on Emerging Technologies and Factory Automation (ETFA), pp. 1–8. IEEE (2022)
Verein Deutscher Ingenieure: VDI/VDE Guideline 2193-1. Language for I4.0 components - Structure of messages (2020)
Giret, A., Botti, V.: Holons and agents. J. Intell. Manuf. 15, 645–659 (2004)
Sidorenko, A., Motsch, W., Wagner, A.: User manuals on accessing and using the MAS. Zenodo (2022)
Sidorenko, A., Motsch, W., Van Bekkum, M., Nikolakis, N., Alexopoulos, K., Wagner, A.: The MAS4AI framework for human-centered agile and smart manufacturing. Front. Artif. Intell. 6, 1241522 (2023)
Verein Deutscher Ingenieure. VDI/VDE Guideline 2653-1. Multi-Agent systems in industrial automation - Fundamentals (2010)
Vogel-Heuser, B., et al.: Agentenmuster für flexible und rekonfigurierbare Industrie 4.0/CPS-Automatisierungs-bzw. Energiesysteme. In: VDI-Kongress Automation 2018 (2018)
Teiwes, H., Blume, S., Herrmann, C., Rössinger, M., Thiede, S.: Energy load profile analysis on machine level. Procedia CIRP 69, 271–276 (2018)
Chu, K.C., Kaifuku, K., Saitou, K.: Optimal integration of alternative energy sources in production systems with customer demand forecast. IEEE Trans. Autom. Sci. Eng. 13(1), 206–214 (2015)
Sauer, J.: Scheduling regarding energy efficiency. Tagung KI (2016)
Motsch, W., Sidorenko, A., David, A., Rübel, P., Wagner, A., Ruskowski, M.: Electrical energy consumption interface in modular skill-based production systems with the asset administration shell. Procedia Manuf. 55, 535–542 (2021)
Bedenbender, H., et al.: Examples of the asset administration shell for industrie 4.0 components–basic part. ZVEI white paper (2017)
Technologie-Initiative SmartFactory KL e.V. Neue Infrastruktur (2019). https://smartfactory.de/wp-content/uploads/2019/03/SF_BR_HM19_Infrastruktur.pdf. Accessed 03 Sept 2023
Motsch, W., David, A., Sivalingam, K., Wagner, A., Ruskowski, M.: Approach for dynamic price-based demand side management in cyber-physical production systems. Procedia Manuf. 51, 1748–1754 (2020)
Motsch, W., Sidorenko, A., Jungbluth, S., Hengel, K. Wagner, A.: Smart Factory Testbed Setup – Final Results. Zenodo (2023)
Rodriguez, S., Gaud, N., Galland, S.: SARL: a general-purpose agent-oriented programming language. In: 2014 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT), vol. 3, pp. 103–110. IEEE (2014)
Acknowledgment
This work was supported by the European Union under the “Horizon 2020” research program (Grant no. 957204) within the project “Multi Agent Systems for Artificial Intelligence” (MAS4AI).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Motsch, W. et al. (2024). Energy Agents for Energy Load Profiling in Modular Skill-Based Production Environments. In: Borangiu, T., Trentesaux, D., Leitão, P., Berrah, L., Jimenez, JF. (eds) Service Oriented, Holonic and Multi-Agent Manufacturing Systems for Industry of the Future. SOHOMA 2023. Studies in Computational Intelligence, vol 1136. Springer, Cham. https://doi.org/10.1007/978-3-031-53445-4_33
Download citation
DOI: https://doi.org/10.1007/978-3-031-53445-4_33
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-53444-7
Online ISBN: 978-3-031-53445-4
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)