Abstract
In recent years, Graph Neural Networks (GNNs) have undergone rapid development and have become an essential tool for building representations of complex relational data. Large real-world graphs, characterised by sparsity in relations and features, necessitate dedicated tools that existing dense tensor-centred approaches cannot easily provide. To address this need, we introduce a GNNs module in Scikit-network, a Python package for graph analysis, leveraging sparse matrices for both graph structures and features. Our contribution enhances GNNs efficiency without requiring access to significant computational resources, unifies graph analysis algorithms and GNNs in the same framework, and prioritises user-friendliness.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
We rely on the number of forks associated with each package on GitHub as a metric to gauge library usage. Please note that this metric provides only a partial view of actual project usage.
- 3.
References
Abadi, M., et al.: Tensorflow: a system for large-scale machine learning. In: 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), pp. 265–283 (2016)
Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Statist. Mech. Theory Exp. 2008(10), P10008 (2008). https://doi.org/10.1088/1742-5468/2008/10/p10008
Bonald, T., De Lara, N., Lutz, Q., Charpentier, B.: Scikit-network: graph analysis in python. J. Mach. Learn. Res. 21(1), 7543–7548 (2020)
Bronstein, M.M., Bruna, J., LeCun, Y., Szlam, A., Vandergheynst, P.: Geometric deep learning: going beyond Euclidean data. IEEE Signal Process. Mag. 34(4), 18–42 (2017). https://doi.org/10.1109/MSP.2017.2693418
Buitinck, L., et al.: API design for machine learning software: experiences from the scikit-learn project. In: ECML PKDD Workshop: Languages for Data Mining and Machine Learning, pp. 108–122 (2013)
Chen, J., Ma, T., Xiao, C.: Fastgcn: fast learning with graph convolutional networks via importance sampling. arXiv preprint arXiv:1801.10247 (2018)
Chen, J., Zhu, J., Song, L.: Stochastic training of graph convolutional networks with variance reduction. arXiv preprint arXiv:1710.10568 (2017)
Chiang, W.L., Liu, X., Si, S., Li, Y., Bengio, S., Hsieh, C.J.: Cluster-gcn: an efficient algorithm for training deep and large graph convolutional networks. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 257–266 (2019)
Csardi, G., Nepusz, T., et al.: The igraph software package for complex network research. Int. J. Complex Syst. 1695(5), 1–9 (2006)
Data61, C.: Stellargraph machine learning library (2018). https://github.com/stellargraph/stellargraph
Fey, M., Lenssen, J.E.: Fast graph representation learning with PyTorch Geometric. In: ICLR Workshop on Representation Learning on Graphs and Manifolds (2019)
Fey, M., Lenssen, J.E., Weichert, F., Leskovec, J.: Gnnautoscale: scalable and expressive graph neural networks via historical embeddings. In: International Conference on Machine Learning, pp. 3294–3304. PMLR (2021)
Frasca, F., Rossi, E., Eynard, D., Chamberlain, B., Bronstein, M., Monti, F.: Sign: scalable inception graph neural networks. arXiv preprint arXiv:2004.11198 (2020)
Grattarola, D., Alippi, C.: Graph neural networks in tensorflow and keras with spektral [application notes]. IEEE Comput. Intell. Mag. 16(1), 99–106 (2021)
Hagberg, A., Swart, P., Chult, D.S.: Exploring network structure, dynamics, and function using networkx. Tech. rep., Los Alamos National Lab. (LANL), Los Alamos (2008)
Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. Adv. Neural Inf. Pocess. Syst. 30 (2017)
Harris, C.R., et al.: Array programming with numpy. Nature 585(7825), 357–362 (2020)
Hu, W., et al.: Open graph benchmark: datasets for machine learning on graphs. arXiv preprint arXiv:2005.00687 (2020)
Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)
Liu, M., et al.: Dig: a turnkey library for diving into graph deep learning research. J. Mach. Learn. Res. 22(1), 10873–10881 (2021)
Lutz, Q.: Graph-based contributions to machine-learning. Theses, Institut Polytechnique de Paris (2022). https://theses.hal.science/tel-03634148
Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: bring order to the web. Tech. rep., Technical report, Stanford University (1998)
Paszke, A.,et al.: Pytorch: an imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 32 (2019)
Peixoto, T.P.: The graph-tool python library. Figshare (2014). https://doi.org/10.6084/m9.figshare.1164194
Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. arXiv preprint arXiv:1710.10903 (2017)
Virtanen, P., et al.: Scipy 1.0: fundamental algorithms for scientific computing in python. Nat. Methods 17(3), 261–272 (2020)
Wang, M., et al.: Deep graph library: a graph-centric, highly-performant package for graph neural networks. arXiv preprint arXiv:1909.01315 (2019)
Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks? arXiv preprint arXiv:1810.00826 (2018)
Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton, W.L., Leskovec, J.: Graph convolutional neural networks for web-scale recommender systems. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 974–983 (2018)
Zeng, H., Zhou, H., Srivastava, A., Kannan, R., Prasanna, V.: Graphsaint: graph sampling based inductive learning method. arXiv preprint arXiv:1907.04931 (2019)
Acknowledgements
The authors would like to thank Tiphaine Viard for the numerous discussions, as well as her insightful comments and suggestions about the paper.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Delarue, S., Bonald, T. (2024). Sparse Graph Neural Networks with Scikit-Network. In: Cherifi, H., Rocha, L.M., Cherifi, C., Donduran, M. (eds) Complex Networks & Their Applications XII. COMPLEX NETWORKS 2023. Studies in Computational Intelligence, vol 1141. Springer, Cham. https://doi.org/10.1007/978-3-031-53468-3_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-53468-3_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-53467-6
Online ISBN: 978-3-031-53468-3
eBook Packages: EngineeringEngineering (R0)