Skip to main content

Leveraging the Power of Signatures for the Construction of Topological Complexes for the Analysis of Multivariate Complex Dynamics

  • Conference paper
  • First Online:
Complex Networks & Their Applications XII (COMPLEX NETWORKS 2023)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1141))

Included in the following conference series:

Abstract

Topological Data Analysis is a field of great interest in many applications such as finance or neuroscience. The goal of the present paper is to propose a novel approach to building simplicial complexes that capture the multiway ordered interactions in the components of high-dimensional time series using the theory of Signatures. Signatures represent one of the most powerful transforms for extracting group-wise structural features and we put them to work in the task of discovering statistically meaningful simplices from a complex that we estimate sequentially. Numerical experiments on an fMRI dataset illustrates the efficiency and relevance of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Change history

  • 18 June 2024

    A correction has been published.

Notes

  1. 1.

    for time dependent Signatures.

  2. 2.

    The k-truncated version of the signature is \(S^{(1)}(X)\oplus S^{(2)}(X)\oplus \dots \oplus S^{(k)}(X)\).

  3. 3.

    HCP, http://www.humanconnectome.org/.

References

  1. Borkar, K., Chaturvedi, A., Vinod, P.K., Bapi, R.S.: Ayu-characterization of healthy aging from neuroimaging data with deep learning and rsfmri. Front. Comput. Neurosci. 16, 940922 (2022)

    Google Scholar 

  2. Broyd, S.J., Demanuele, C., Debener, S., Helps, S.K., James, C.J., Sonuga-Barke, E.J.: Default-mode brain dysfunction in mental disorders: a systematic review. Neurosci. Biobehav. Rev. 33, 279–96 (Oct 2008)

    Google Scholar 

  3. Chazal, F., Michel, B.: An introduction to topological data analysis: fundamental and practical aspects for data scientists. Front. Artif. Intell. 4, 108 (2021)

    Article  Google Scholar 

  4. Chen, K.-T.: Integration of paths, geometric invariants and a generalized baker-hausdorff formula. Ann. Math. 65(1), 163–178 (1957)

    Article  MathSciNet  Google Scholar 

  5. Chevyrev, I., Kormilitzin, A.: A primer on the signature method in machine learning. arXiv preprint arXiv:1603.03788 (2016)

  6. Eckmann, J.P., Genève, U.: Martin Hairer got the fields medal for his study of the KPZ equation

    Google Scholar 

  7. Fermanian, A.: Embedding and learning with signatures. Comput. Stat. Data Anal. 157, 107148 (2021)

    Article  MathSciNet  Google Scholar 

  8. Fermanian, A., Marion, P., Vert, J.-P., Biau, G.: Framing RNN as a kernel method: A neural ode approach. Adv. Neural. Inf. Process. Syst. 34, 3121–3134 (2021)

    Google Scholar 

  9. Friz, P.K., Hairer, M.: A Course on Rough Paths: With an Introduction to Regularity Structures. Springer International Publishing, Cham (2020)

    Book  Google Scholar 

  10. Friz, P.K., Victoir, N.B.: Multidimensional stochastic processes as rough paths: theory and applications, vol. 120 Cambridge University Press (2010)

    Google Scholar 

  11. Giusti, C., Lee, D.: Iterated integrals and population time series analysis. In: Baas, N.A., Carlsson, G.E., Quick, G., Szymik, M., Thaule, M. (eds.) Topological Data Analysis: The Abel Symposium 2018, pp. 219–246. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-43408-3_9

    Chapter  Google Scholar 

  12. Kim, H., Hahm, J., Lee, H., Kang, E., Kang, H., Lee, D.S.: Brain networks engaged in audiovisual integration during speech perception revealed by persistent homology-based network filtration. Brain Connectivity 5(4), 245–258 (2015)

    Google Scholar 

  13. Kormilitzin, A., Vaci, N., Liu, Q., Ni, H., Nenadic, G., Nevado-Holgado, A.: An efficient representation of chronological events in medical texts. arXiv preprint arXiv:2010.08433 (2020)

  14. Lyons, T., McLeod, A.D.: Signature methods in machine learning. arXiv preprint arXiv:2206.14674 (2022)

  15. Lyons, T., Qian, Z.: System control and rough paths. Oxford University Press (2002)

    Google Scholar 

  16. Meinshausen, N., Bühlmann, P.: High-dimensional graphs and variable selection with the lasso (2006)

    Google Scholar 

  17. Petri, G., et al.: Homological scaffolds of brain functional networks. J. Royal Society Interface. 11(101), 20140873 (2014)

    Google Scholar 

  18. Posner, M.I., Petersen, S.E.: The attention system of the human brain. Annual Rev. Neurosci. 13, 25–42 (Feb 1990)

    Google Scholar 

  19. Santoro, A., Battiston, F., Petri, G., Amico, E.: Higher-order organization of multivariate time series. Nat. Phys. 19(2), 221–229 (2023)

    Google Scholar 

  20. Schaefer, A., et al.: Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI. (July 2017)

    Google Scholar 

  21. Sizemore, A.E., Giusti, C., Kahn, A., Vettel, J.M., Betzel, R.F., Bassett, D.S.: Cliques and cavities in the human connectome. J. Comput. Neurosci. 44(1), 115–145 (2018). https://doi.org/10.1007/s10827-017-0672-6

    Article  MathSciNet  Google Scholar 

  22. Stolz, B.J., Harrington, H.A., Porter, M.A.: Persistent homology of time-dependent functional networks constructed from coupled time series. Chaos: An Interdiscip. J. Nonlinear Sci. 27(4) (2017)

    Google Scholar 

  23. Yeo, B.T., et al.: The organization of the human cerebral cortex estimated by functional correlation. J. Neurophysiol. 106, 1125–1165 (June 2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Chrétien .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chrétien, S., Gao, B., Thébault Guiochon, A., Vaucher, R. (2024). Leveraging the Power of Signatures for the Construction of Topological Complexes for the Analysis of Multivariate Complex Dynamics. In: Cherifi, H., Rocha, L.M., Cherifi, C., Donduran, M. (eds) Complex Networks & Their Applications XII. COMPLEX NETWORKS 2023. Studies in Computational Intelligence, vol 1141. Springer, Cham. https://doi.org/10.1007/978-3-031-53468-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53468-3_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53467-6

  • Online ISBN: 978-3-031-53468-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics