Abstract
Topological Data Analysis is a field of great interest in many applications such as finance or neuroscience. The goal of the present paper is to propose a novel approach to building simplicial complexes that capture the multiway ordered interactions in the components of high-dimensional time series using the theory of Signatures. Signatures represent one of the most powerful transforms for extracting group-wise structural features and we put them to work in the task of discovering statistically meaningful simplices from a complex that we estimate sequentially. Numerical experiments on an fMRI dataset illustrates the efficiency and relevance of our approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Change history
18 June 2024
A correction has been published.
Notes
- 1.
for time dependent Signatures.
- 2.
The k-truncated version of the signature is \(S^{(1)}(X)\oplus S^{(2)}(X)\oplus \dots \oplus S^{(k)}(X)\).
- 3.
References
Borkar, K., Chaturvedi, A., Vinod, P.K., Bapi, R.S.: Ayu-characterization of healthy aging from neuroimaging data with deep learning and rsfmri. Front. Comput. Neurosci. 16, 940922 (2022)
Broyd, S.J., Demanuele, C., Debener, S., Helps, S.K., James, C.J., Sonuga-Barke, E.J.: Default-mode brain dysfunction in mental disorders: a systematic review. Neurosci. Biobehav. Rev. 33, 279–96 (Oct 2008)
Chazal, F., Michel, B.: An introduction to topological data analysis: fundamental and practical aspects for data scientists. Front. Artif. Intell. 4, 108 (2021)
Chen, K.-T.: Integration of paths, geometric invariants and a generalized baker-hausdorff formula. Ann. Math. 65(1), 163–178 (1957)
Chevyrev, I., Kormilitzin, A.: A primer on the signature method in machine learning. arXiv preprint arXiv:1603.03788 (2016)
Eckmann, J.P., Genève, U.: Martin Hairer got the fields medal for his study of the KPZ equation
Fermanian, A.: Embedding and learning with signatures. Comput. Stat. Data Anal. 157, 107148 (2021)
Fermanian, A., Marion, P., Vert, J.-P., Biau, G.: Framing RNN as a kernel method: A neural ode approach. Adv. Neural. Inf. Process. Syst. 34, 3121–3134 (2021)
Friz, P.K., Hairer, M.: A Course on Rough Paths: With an Introduction to Regularity Structures. Springer International Publishing, Cham (2020)
Friz, P.K., Victoir, N.B.: Multidimensional stochastic processes as rough paths: theory and applications, vol. 120 Cambridge University Press (2010)
Giusti, C., Lee, D.: Iterated integrals and population time series analysis. In: Baas, N.A., Carlsson, G.E., Quick, G., Szymik, M., Thaule, M. (eds.) Topological Data Analysis: The Abel Symposium 2018, pp. 219–246. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-43408-3_9
Kim, H., Hahm, J., Lee, H., Kang, E., Kang, H., Lee, D.S.: Brain networks engaged in audiovisual integration during speech perception revealed by persistent homology-based network filtration. Brain Connectivity 5(4), 245–258 (2015)
Kormilitzin, A., Vaci, N., Liu, Q., Ni, H., Nenadic, G., Nevado-Holgado, A.: An efficient representation of chronological events in medical texts. arXiv preprint arXiv:2010.08433 (2020)
Lyons, T., McLeod, A.D.: Signature methods in machine learning. arXiv preprint arXiv:2206.14674 (2022)
Lyons, T., Qian, Z.: System control and rough paths. Oxford University Press (2002)
Meinshausen, N., Bühlmann, P.: High-dimensional graphs and variable selection with the lasso (2006)
Petri, G., et al.: Homological scaffolds of brain functional networks. J. Royal Society Interface. 11(101), 20140873 (2014)
Posner, M.I., Petersen, S.E.: The attention system of the human brain. Annual Rev. Neurosci. 13, 25–42 (Feb 1990)
Santoro, A., Battiston, F., Petri, G., Amico, E.: Higher-order organization of multivariate time series. Nat. Phys. 19(2), 221–229 (2023)
Schaefer, A., et al.: Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI. (July 2017)
Sizemore, A.E., Giusti, C., Kahn, A., Vettel, J.M., Betzel, R.F., Bassett, D.S.: Cliques and cavities in the human connectome. J. Comput. Neurosci. 44(1), 115–145 (2018). https://doi.org/10.1007/s10827-017-0672-6
Stolz, B.J., Harrington, H.A., Porter, M.A.: Persistent homology of time-dependent functional networks constructed from coupled time series. Chaos: An Interdiscip. J. Nonlinear Sci. 27(4) (2017)
Yeo, B.T., et al.: The organization of the human cerebral cortex estimated by functional correlation. J. Neurophysiol. 106, 1125–1165 (June 2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Chrétien, S., Gao, B., Thébault Guiochon, A., Vaucher, R. (2024). Leveraging the Power of Signatures for the Construction of Topological Complexes for the Analysis of Multivariate Complex Dynamics. In: Cherifi, H., Rocha, L.M., Cherifi, C., Donduran, M. (eds) Complex Networks & Their Applications XII. COMPLEX NETWORKS 2023. Studies in Computational Intelligence, vol 1141. Springer, Cham. https://doi.org/10.1007/978-3-031-53468-3_24
Download citation
DOI: https://doi.org/10.1007/978-3-031-53468-3_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-53467-6
Online ISBN: 978-3-031-53468-3
eBook Packages: EngineeringEngineering (R0)