Skip to main content

Deep Distance Sensitivity Oracles

  • Conference paper
  • First Online:
Complex Networks & Their Applications XII (COMPLEX NETWORKS 2023)

Abstract

Shortest path computation is one of the most fundamental and well-studied problems in algorithmic graph theory, though it becomes more complex when graph components are susceptible to failure. This research utilizes a Distance Sensitivity Oracle (DSO) for efficiently querying replacement paths in graphs with potential failures to avoid inefficiently recomputing them after every outage with traditional techniques. By leveraging technologies such as node2vec, graph attention networks, and multi-layer perceptrons, the study pioneers a method to identify pivot nodes that lead to replacement paths closely resembling optimal solutions with deep learning. Tests on real-world network demonstrate replacement paths that are longer by merely a few percentages compared to the optimal solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    For a non-negative function \(f = f(n)\), we use \(\tilde{O}(f)\) to denote \(O(f \cdot \textsf {polylog}(n))\).

References

  1. Afek, Y., Bremler-Barr, A., Kaplan, H., Cohen, E., Merritt, M.: Restoration by path concatenation: fast recovery of MPLS paths. Dis. Comput. 15(4), 273–283 (2002). https://doi.org/10.1007/s00446-002-0080-6

    Article  Google Scholar 

  2. Baswana, S., Khanna, N.: Approximate shortest paths avoiding a failed vertex: near optimal data structures for undirected unweighted graphs. Algorithmica 66, 18–50 (2013).https://doi.org/10.1007/s00453-012-9621-y

  3. Bernstein, A., Karger, D.R.: A nearly optimal oracle for avoiding failed vertices and edges. In: Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA, 31 May - 2 June 2009, pp. 101–110. ACM (2009). https://doi.org/10.1145/1536414.1536431

  4. Billand, P., Bravard, C., Iyengar, S.S., Kumar, R., Sarangi, S.: Network connectivity under node failure. Econ. Lett. 149, 164–167 (2016)

    Article  MathSciNet  Google Scholar 

  5. Bläsius, T., Friedrich, T., Katzmann, M., Krohmer, A.: Hyperbolic embeddings for near-optimal greedy routing. ACM J. Exp. Algorithmics 25 (2020). https://doi.org/10.1145/3381751. https://doi.org/10.1145/3381751

  6. Cai, H., Zheng, V.W., Chang, K.C.C.: A comprehensive survey of graph embedding: problems, techniques, and applications. IEEE Trans. Knowl. Data Eng. 30(9), 1616–1637 (2018)

    Article  Google Scholar 

  7. Cai, T., Luo, S., Xu, K., He, D., Liu, T.y., Wang, L.: Graphnorm: a principled approach to accelerating graph neural network training. In: International Conference on Machine Learning, pp. 1204–1215. PMLR (2021)

    Google Scholar 

  8. Chechik, S., Cohen, S.: Distance sensitivity oracles with subcubic preprocessing time and fast query time. In: Proccedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020, Chicago, IL, USA, 22-26 June 2020, pp. 1375–1388. ACM (2020). https://doi.org/10.1145/3357713.3384253

  9. Chechik, S., Langberg, M., Peleg, D., Roditty, L.: \(f\)-sensitivity distance oracles and routing schemes. Algorithmica 63, 861–882 (2012). https://doi.org/10.1007/s00453-011-9543-0

    Article  MathSciNet  Google Scholar 

  10. Chen, X., et al.: Ndist2vec: node with landmark and new distance to vector method for predicting shortest path distance along road networks. ISPRS Int. J. Geo Inf. 11(10), 514 (2022)

    Article  Google Scholar 

  11. Crichton, G., Guo, Y., Pyysalo, S., Korhonen, A.: Neural networks for link prediction in realistic biomedical graphs: a multi-dimensional evaluation of graph embedding-based approaches. BMC Bioinform. 19(1), 1–11 (2018)

    Article  Google Scholar 

  12. Cvetkovski, A., Crovella, M.: Hyperbolic embedding and routing for dynamic graphs. In: IEEE INFOCOM 2009, pp. 1647–1655. IEEE (2009)

    Google Scholar 

  13. Demetrescu, C., Thorup, M., Chowdhury, R.A., Ramachandran, V.: Oracles for distances avoiding a failed node or link. SIAM J. Comput. 37(5), 1299–1318 (2008). https://doi.org/10.1137/S0097539705429847

    Article  MathSciNet  Google Scholar 

  14. Duan, R., Zhang, T.: Improved distance sensitivity oracles via tree partitioning. In: WADS 2017. LNCS, vol. 10389, pp. 349–360. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62127-2_30

    Chapter  Google Scholar 

  15. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 855–864 (2016)

    Google Scholar 

  16. Gu, Y., Ren, H.: Constructing a Distance Sensitivity Oracle in \(O(n^2.5794 M)\) Time. In: Bansal, N., Merelli, E., Worrell, J. (eds.) 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021), Leibniz International Proceedings in Informatics (LIPIcs), vol. 198, pp. 76:1–76:20. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2021). https://doi.org/10.4230/LIPIcs.ICALP.2021.76. https://drops.dagstuhl.de/opus/volltexte/2021/14145

  17. Huang, S., Wang, Y., Zhao, T., Li, G.: A learning-based method for computing shortest path distances on road networks. In: 2021 IEEE 37th International Conference on Data Engineering (ICDE), pp. 360–371. IEEE (2021)

    Google Scholar 

  18. Jindal, I., Chen, X., Nokleby, M., Ye, J., et al.: A unified neural network approach for estimating travel time and distance for a taxi trip. arXiv preprint arXiv:1710.04350 (2017)

  19. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  20. Lincoln, A., Williams, V.V., Williams, R.R.: Tight hardness for shortest cycles and paths in sparse graphs. In: Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, 7-10 January 2018, pp. 1236–1252. SIAM (2018). https://doi.org/10.1137/1.9781611975031.80

  21. Qi, J., Wang, W., Zhang, R., Zhao, Z.: A learning based approach to predict shortest-path distances. In: EDBT, pp. 367–370 (2020)

    Google Scholar 

  22. Ren, H.: Improved distance sensitivity oracles with subcubic preprocessing time. J. Comput. Syst. Sci. 123, 159–170 (2022). https://doi.org/10.1016/j.jcss.2021.08.005

    Article  MathSciNet  Google Scholar 

  23. Ren, Y., Ay, A., Kahveci, T.: Shortest path counting in probabilistic biological networks. BMC Bioinform. 19(1), 1–19 (2018)

    Article  Google Scholar 

  24. Rizi, F.S., Schloetterer, J., Granitzer, M.: Shortest path distance approximation using deep learning techniques. In: 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pp. 1007–1014. IEEE (2018)

    Google Scholar 

  25. Rossi, R.A., Ahmed, N.K.: The network data repository with interactive graph analytics and visualization. In: AAAI (2015). https://networkrepository.com

  26. Tian, X., Song, Y., Wang, X., Gong, X.: Shortest path based potential common friend recommendation in social networks. In: 2012 Second International Conference on Cloud and Green Computing, pp. 541–548. IEEE (2012)

    Google Scholar 

  27. Ukkonen, A., Castillo, C., Donato, D., Gionis, A.: Searching the wikipedia with contextual information. In: Proceedings of the 17th ACM Conference on Information and Knowledge Management, pp. 1351–1352 (2008)

    Google Scholar 

  28. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. arXiv preprint arXiv:1710.10903 (2017)

  29. Wang, H.S., Zhu, X., Peh, L.S., Malik, S.: Orion: a power-performance simulator for interconnection networks. In: 35th Annual IEEE/ACM International Symposium on Microarchitecture, 2002.(MICRO-35), Proceedings., pp. 294–305. IEEE (2002)

    Google Scholar 

  30. Zhang, X., Mu, J., Liu, H., Zhang, X.: Graphnet: graph clustering with deep neural networks. In: ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3800–3804. IEEE (2021)

    Google Scholar 

  31. Zhao, X., Sala, A., Zheng, H., Zhao, B.Y.: Efficient shortest paths on massive social graphs. In: 7th International Conference on Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom), pp. 77–86. IEEE (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davin Jeong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jeong, D. et al. (2024). Deep Distance Sensitivity Oracles. In: Cherifi, H., Rocha, L.M., Cherifi, C., Donduran, M. (eds) Complex Networks & Their Applications XII. COMPLEX NETWORKS 2023. Studies in Computational Intelligence, vol 1141. Springer, Cham. https://doi.org/10.1007/978-3-031-53468-3_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53468-3_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53467-6

  • Online ISBN: 978-3-031-53468-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics