Abstract
Shortest path computation is one of the most fundamental and well-studied problems in algorithmic graph theory, though it becomes more complex when graph components are susceptible to failure. This research utilizes a Distance Sensitivity Oracle (DSO) for efficiently querying replacement paths in graphs with potential failures to avoid inefficiently recomputing them after every outage with traditional techniques. By leveraging technologies such as node2vec, graph attention networks, and multi-layer perceptrons, the study pioneers a method to identify pivot nodes that lead to replacement paths closely resembling optimal solutions with deep learning. Tests on real-world network demonstrate replacement paths that are longer by merely a few percentages compared to the optimal solution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
For a non-negative function \(f = f(n)\), we use \(\tilde{O}(f)\) to denote \(O(f \cdot \textsf {polylog}(n))\).
References
Afek, Y., Bremler-Barr, A., Kaplan, H., Cohen, E., Merritt, M.: Restoration by path concatenation: fast recovery of MPLS paths. Dis. Comput. 15(4), 273–283 (2002). https://doi.org/10.1007/s00446-002-0080-6
Baswana, S., Khanna, N.: Approximate shortest paths avoiding a failed vertex: near optimal data structures for undirected unweighted graphs. Algorithmica 66, 18–50 (2013).https://doi.org/10.1007/s00453-012-9621-y
Bernstein, A., Karger, D.R.: A nearly optimal oracle for avoiding failed vertices and edges. In: Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA, 31 May - 2 June 2009, pp. 101–110. ACM (2009). https://doi.org/10.1145/1536414.1536431
Billand, P., Bravard, C., Iyengar, S.S., Kumar, R., Sarangi, S.: Network connectivity under node failure. Econ. Lett. 149, 164–167 (2016)
Bläsius, T., Friedrich, T., Katzmann, M., Krohmer, A.: Hyperbolic embeddings for near-optimal greedy routing. ACM J. Exp. Algorithmics 25 (2020). https://doi.org/10.1145/3381751. https://doi.org/10.1145/3381751
Cai, H., Zheng, V.W., Chang, K.C.C.: A comprehensive survey of graph embedding: problems, techniques, and applications. IEEE Trans. Knowl. Data Eng. 30(9), 1616–1637 (2018)
Cai, T., Luo, S., Xu, K., He, D., Liu, T.y., Wang, L.: Graphnorm: a principled approach to accelerating graph neural network training. In: International Conference on Machine Learning, pp. 1204–1215. PMLR (2021)
Chechik, S., Cohen, S.: Distance sensitivity oracles with subcubic preprocessing time and fast query time. In: Proccedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020, Chicago, IL, USA, 22-26 June 2020, pp. 1375–1388. ACM (2020). https://doi.org/10.1145/3357713.3384253
Chechik, S., Langberg, M., Peleg, D., Roditty, L.: \(f\)-sensitivity distance oracles and routing schemes. Algorithmica 63, 861–882 (2012). https://doi.org/10.1007/s00453-011-9543-0
Chen, X., et al.: Ndist2vec: node with landmark and new distance to vector method for predicting shortest path distance along road networks. ISPRS Int. J. Geo Inf. 11(10), 514 (2022)
Crichton, G., Guo, Y., Pyysalo, S., Korhonen, A.: Neural networks for link prediction in realistic biomedical graphs: a multi-dimensional evaluation of graph embedding-based approaches. BMC Bioinform. 19(1), 1–11 (2018)
Cvetkovski, A., Crovella, M.: Hyperbolic embedding and routing for dynamic graphs. In: IEEE INFOCOM 2009, pp. 1647–1655. IEEE (2009)
Demetrescu, C., Thorup, M., Chowdhury, R.A., Ramachandran, V.: Oracles for distances avoiding a failed node or link. SIAM J. Comput. 37(5), 1299–1318 (2008). https://doi.org/10.1137/S0097539705429847
Duan, R., Zhang, T.: Improved distance sensitivity oracles via tree partitioning. In: WADS 2017. LNCS, vol. 10389, pp. 349–360. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62127-2_30
Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 855–864 (2016)
Gu, Y., Ren, H.: Constructing a Distance Sensitivity Oracle in \(O(n^2.5794 M)\) Time. In: Bansal, N., Merelli, E., Worrell, J. (eds.) 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021), Leibniz International Proceedings in Informatics (LIPIcs), vol. 198, pp. 76:1–76:20. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2021). https://doi.org/10.4230/LIPIcs.ICALP.2021.76. https://drops.dagstuhl.de/opus/volltexte/2021/14145
Huang, S., Wang, Y., Zhao, T., Li, G.: A learning-based method for computing shortest path distances on road networks. In: 2021 IEEE 37th International Conference on Data Engineering (ICDE), pp. 360–371. IEEE (2021)
Jindal, I., Chen, X., Nokleby, M., Ye, J., et al.: A unified neural network approach for estimating travel time and distance for a taxi trip. arXiv preprint arXiv:1710.04350 (2017)
Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Lincoln, A., Williams, V.V., Williams, R.R.: Tight hardness for shortest cycles and paths in sparse graphs. In: Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, 7-10 January 2018, pp. 1236–1252. SIAM (2018). https://doi.org/10.1137/1.9781611975031.80
Qi, J., Wang, W., Zhang, R., Zhao, Z.: A learning based approach to predict shortest-path distances. In: EDBT, pp. 367–370 (2020)
Ren, H.: Improved distance sensitivity oracles with subcubic preprocessing time. J. Comput. Syst. Sci. 123, 159–170 (2022). https://doi.org/10.1016/j.jcss.2021.08.005
Ren, Y., Ay, A., Kahveci, T.: Shortest path counting in probabilistic biological networks. BMC Bioinform. 19(1), 1–19 (2018)
Rizi, F.S., Schloetterer, J., Granitzer, M.: Shortest path distance approximation using deep learning techniques. In: 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pp. 1007–1014. IEEE (2018)
Rossi, R.A., Ahmed, N.K.: The network data repository with interactive graph analytics and visualization. In: AAAI (2015). https://networkrepository.com
Tian, X., Song, Y., Wang, X., Gong, X.: Shortest path based potential common friend recommendation in social networks. In: 2012 Second International Conference on Cloud and Green Computing, pp. 541–548. IEEE (2012)
Ukkonen, A., Castillo, C., Donato, D., Gionis, A.: Searching the wikipedia with contextual information. In: Proceedings of the 17th ACM Conference on Information and Knowledge Management, pp. 1351–1352 (2008)
Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. arXiv preprint arXiv:1710.10903 (2017)
Wang, H.S., Zhu, X., Peh, L.S., Malik, S.: Orion: a power-performance simulator for interconnection networks. In: 35th Annual IEEE/ACM International Symposium on Microarchitecture, 2002.(MICRO-35), Proceedings., pp. 294–305. IEEE (2002)
Zhang, X., Mu, J., Liu, H., Zhang, X.: Graphnet: graph clustering with deep neural networks. In: ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3800–3804. IEEE (2021)
Zhao, X., Sala, A., Zheng, H., Zhao, B.Y.: Efficient shortest paths on massive social graphs. In: 7th International Conference on Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom), pp. 77–86. IEEE (2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Jeong, D. et al. (2024). Deep Distance Sensitivity Oracles. In: Cherifi, H., Rocha, L.M., Cherifi, C., Donduran, M. (eds) Complex Networks & Their Applications XII. COMPLEX NETWORKS 2023. Studies in Computational Intelligence, vol 1141. Springer, Cham. https://doi.org/10.1007/978-3-031-53468-3_38
Download citation
DOI: https://doi.org/10.1007/978-3-031-53468-3_38
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-53467-6
Online ISBN: 978-3-031-53468-3
eBook Packages: EngineeringEngineering (R0)