Abstract
Rewiring of molecular interactions under different conditions causes different phenotypic responses. Differential Network Analysis (also indicated as DNA) aims to investigate the rewiring of gene and protein networks. DNA algorithms combine statistical learning and graph theory to explore the changes in the interaction patterns starting from experimental observation. Despite there exist many methods to model rewiring in networks, we propose to use age and gender factors to guide rewiring algorithms. We present a novel differential network analysis method that consider the differential expression of genes by means of sex and gender attributes. We hypothesise that the expression of genes may be represented by using a non-gaussian process. We quantify changes in non-parametric correlations between gene pairs and changes in expression levels for individual genes. We apply our method to identify the differential networks between males and females in public expression datasets related to mellitus diabetes in liver tissue. Results show that this method can find biologically relevant differential networks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Allen, G.I., Liu, Z.: A local poisson graphical model for inferring networks from sequencing data. IEEE Trans. Nanobiosci. 12(3), 189–198 (2013)
Buccitelli, C., Selbach, M.: mRNAs, proteins and the emerging principles of gene expression control. Nat. Rev. Genet. 21(10), 630–644 (2020)
Cannataro, M., Guzzi, P.H., Mazza, T., Tradigo, G., Veltri, P.: Using ontologies for preprocessing and mining spectra data on the grid. Futur. Gener. Comput. Syst. 23(1), 55–60 (2007)
Cannistraci, C.V., Valsecchi, M.G., Capua, I.: Age-sex population adjusted analysis of disease severity in epidemics as a tool to devise public health policies for COVID-19. Sci. Rep. 11(1), 1–8 (2021)
Chen, S., Witten, D.M., Shojaie, A.: Selection and estimation for mixed graphical models. Biometrika 102(1), 47–64 (2014)
Chiarella, G., et al.: Vestibular disorders in euthyroid patients with hashimoto’s thyroiditis: role of thyroid autoimmunity. Clin. Endocrinol. 81(4), 600–605 (2014)
Cho, Y.R., Mina, M., Lu, Y., Kwon, N., Guzzi, P.H.: M-finder: uncovering functionally associated proteins from interactome data integrated with go annotations. Proteome Sci. 11(1), 1–12 (2013)
Cookson, W., Liang, L., Abecasis, G., Moffatt, M., Lathrop, M.: Mapping complex disease traits with global gene expression. Nat. Rev. Genet. 10(3), 184–194 (2009)
Galicia, J.C., Guzzi, P.H., Giorgi, F.M., Khan, A.A.: Predicting the response of the dental pulp to SARS-CoV2 infection: a transcriptome-wide effect cross-analysis. Genes Immun. 21(5), 360–363 (2020)
Grimes, T., Potter, S.S., Datta, S.: Integrating gene regulatory pathways into differential network analysis of gene expression data. Sci. Rep. 9(1), 1–12 (2019)
Gu, S., Jiang, M., Guzzi, P.H., Milenković, T.: Modeling multi-scale data via a network of networks. Bioinformatics 38(9), 2544–2553 (2022)
Guzzi, P.H., et al.: Analysis of age-dependent gene-expression in human tissues for studying diabetes comorbidities. Sci. Rep. 13(1), 10372 (2023)
Guzzi, P.H., et al.: Differential network analysis between sex of the genes related to comorbidities of type 2 mellitus diabetes. Appl. Network Sci. 8(1), 1–16 (2023)
Ideker, T., Krogan, N.J.: Differential network biology. Mol. Syst. Biol. 8(1), 565 (2012)
Lauritzen, S.L.: Graphical Models, vol. 17. Clarendon Press (1996)
Lonsdale, J., et al.: The genotype-tissue expression (GTEx) project. Nat. Genet. 45(6), 580–585 (2013)
Mangoni, M., et al.: Investigating mitochondrial gene expression patterns in drosophila melanogaster using network analysis to understand aging mechanisms. Appl. Sci. 13(12), 7342 (2023)
Mercatelli, D., Pedace, E., Veltri, P., Giorgi, F.M., Guzzi, P.H.: Exploiting the molecular basis of age and gender differences in outcomes of SARS-CoV-2 infections. Comput. Struct. Biotechnol. J. 19, 4092–4100 (2021)
Milano, M., et al.: An extensive assessment of network alignment algorithms for comparison of brain connectomes. BMC Bioinf. 18, 31–45 (2017)
Ortuso, F., Mercatelli, D., Guzzi, P.H., Giorgi, F.M.: Structural genetics of circulating variants affecting the SARS-CoV-2 spike/human ace2 complex. J. Biomol. Struct. Dyn. 40(14), 6545–6555 (2021)
Pressler, M.P., Horvath, A., Entcheva, E.: Sex-dependent transcription of cardiac electrophysiology and links to acetylation modifiers based on the GTEx database. Front. Cardiovasc. Med. 9, 941890 (2022)
Roy, A., Dunson, D.B.: Nonparametric graphical model for counts. J. Mach. Learn. Res. 21(1), 9353–9373 (2020)
Roy, S., Manners, H.N., Jha, M., Guzzi, P.H., Kalita, J.K.: Soft computing approaches to extract biologically significant gene network modules. In: Purohit, H.J., Kalia, V.C., More, R.P. (eds.) Soft Computing for Biological Systems, pp. 23–37. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-7455-4_3
Shojaie, A.: Differential network analysis: a statistical perspective. Wiley Interdiscip. Rev. Comput. Stat. 13(2), e1508 (2021)
Stark, R., Grzelak, M., Hadfield, J.: RNA sequencing: the teenage years. Nat. Rev. Genet. 20(11), 631–656 (2019)
Succurro, E., et al.: Sex-specific differences in prevalence of nonalcoholic fatty liver disease in subjects with prediabetes and type 2 diabetes. Diabetes Res. Clin. Pract. 190, 110027 (2022)
Wainwright, M.J., Lafferty, J.D., Ravikumar, P.K.: High-dimensional graphical model selection using \(\ell _1\) regularized logistic regression. In: Advances in Neural Information Processing Systems, pp. 1465–1472 (2007)
Zimmerman, D.W.: Comparative power of student T test and Mann-Whitney U test for unequal sample sizes and variances. J. Exp. Educ. 55(3), 171–174 (1987)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Guzzi, P.H., Roy, A., Cortese, F., Veltri, P. (2024). Non Parametric Differential Network Analysis for Biological Data. In: Cherifi, H., Rocha, L.M., Cherifi, C., Donduran, M. (eds) Complex Networks & Their Applications XII. COMPLEX NETWORKS 2023. Studies in Computational Intelligence, vol 1143. Springer, Cham. https://doi.org/10.1007/978-3-031-53472-0_10
Download citation
DOI: https://doi.org/10.1007/978-3-031-53472-0_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-53471-3
Online ISBN: 978-3-031-53472-0
eBook Packages: EngineeringEngineering (R0)