Skip to main content

Graph Based Approach for Galaxy Filament Extraction

  • Conference paper
  • First Online:
Complex Networks & Their Applications XII (COMPLEX NETWORKS 2023)

Abstract

We propose an original density estimator built from a cloud of points \( \mathcal {X}^{}_{ } \subset \mathbb R ^d\). To do this, we consider geometric graphs \(\mathcal {G}(\mathcal {X}^{}_{ }, \ r)\) on the cloud. These graphs depend on a radius r. By varying the radius, we see the emergence of large components around certain critical radii, which is the phenomenon of continuum percolation. Percolation allows us to have both a local view of the data (through local constraints on the radius r) and a global one (the emergence of macro-structures). With this tool, we address the problem of galaxy filament extraction. The density estimator gives us a relevant graph on galaxies. With an algorithm sharing the ideas of the Fréchet mean, we extract a subgraph from this graph, the galaxy filaments.

The first author would like to thank the Université Côte d’Azur (UCA) DS4H Investments in the Future project managed by the National Research Agency (ANR, reference number ANR-17-EURE-0004) and 3IA Côte d’Azur for partial funding of his PhD thesis. All the authors acknowledge a partial support by Nokia Bell Labs “Distributed Learning and Control for Network Analysis” and Bpifrance in collaboration with Airbus D &S (LiChIE contract, 2020–2024).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Those ‘filaments’ are relatively thick and have a non-negligible width; a real 1D-manifold would not have a density w.r.t. the Lebesgue measure.

  2. 2.

    But still \(p_\infty (r_c) = 0\). Although it is widely accepted that for any \(d \ge 2\), \(p_\infty (r_c) = 0\), this has only been proved for \(d = 2\) (cf. theorem 4.5 by Meester & Roy [23] and by Tanemura for d sufficiently large [30]).

  3. 3.

    Thanks to Vinay Kumar [33] for sharing the data.

  4. 4.

    Thanks to the authors of the article “Detection of cosmic filaments using the Candy model” [29] for the generation of the data used herein. These data were kindly supplied by Radu Stoica, Enn Saar and Vicent Martínez.

References

  1. 2df galaxy redshift survey. 2dF Galaxy Redshift Survey 2dF Galaxy Redshift Survey

    Google Scholar 

  2. Sloan digital sky survey. http://www.sdss.org

  3. Longair, M., Einasto, J. (eds.). The Large Scale Structure of the Universe, International Astronomical Union Symposia, vol. 79, p. 464. Springer, Tallinn (1978). https://doi.org/10.1007/978-94-009-9843-8

  4. Attali, D., Boissonnat, J.D., Edelsbrunner, H.: Stability and Computation of Medial Axes - a State-of-the-Art Report, pp. 109–125. Springer (2009). https://doi.org/10.1007/b106657_6

  5. Barrow, J.D., Bhavsar, S.P., Sonoda, D.H.: Minimal spanning trees, filaments and galaxy clustering. MNRAS 216(1), 17–35 (1985). https://doi.org/10.1093/mnras/216.1.17

    Article  Google Scholar 

  6. Biau, G., Devroye, L.: Lectures on the Nearest Neighbor Method, vol. 246. Springer (2015). https://doi.org/10.1007/978-3-319-25388-6

  7. Bobrowski, O., Kahle, M.: Topology of rand. geom. complexes: a survey. J. Appl. Comput. Top. 1, 331–364 (2018). https://doi.org/10.1007/s41468-017-0010-0

  8. Boissonnat, J.D., Wintraecken, M.: The reach of subsets of manifolds. J. Appl. Comput. Top. 1–23 (2023). https://doi.org/10.1007/s41468-023-00116-x

  9. Bollobás, B., Riordan, O.: Percolation. Cambridge University Press (2006). https://doi.org/10.1017/CBO9781139167383

    Article  Google Scholar 

  10. Campello, R.J.G.B., Moulavi, D., Sander, J.: Density-based clustering based on hierarchical density estimates. In: Advances in Knowledge Discovery and Data Mining, pp. 160–172. Springer, Berlin (2013). https://doi.org/10.1007/978-3-642-37456-2_14

  11. Colberg, J.M.: Quantifying cosmic superstructures. MNRAS 375(1), 337–347 (2007). https://doi.org/10.1111/j.1365-2966.2006.11312.x

    Article  Google Scholar 

  12. Darvish, B., Mobasher, B., Sobral, D., Scoville, N., Aragon-Calvo, M.: A comparative study of density field estimation for galaxies. Astrophys. J. 805(2), 121 (2015). https://doi.org/10.1088/0004-637X/805/2/121

    Article  Google Scholar 

  13. Einasto, J.: Large scale structure of the Universe. AIP Conf. Proc. 1205(1), 72–81 (2010). https://doi.org/10.1063/1.3382336

    Article  Google Scholar 

  14. Ferdosi, B.J., Buddelmeijer, H., Trager, S.C., Wilkinson, M.H.F., Roerdink, J.B.T.M.: Comparison of density estimation methods for astronomical datasets. Astron. Astrophys. 531, A114 (2011). https://doi.org/10.1051/0004-6361/201116878

    Article  Google Scholar 

  15. Fréchet, M.: L’intégrale abstraite d’une fonction abstraite d’une variable abstraite et son application à la moyenne d’un élément aléatoire de nature quelconque. La Revue Scientifique (1944)

    Google Scholar 

  16. Gernez, P., Descombes, X., Zerubia, J., Slezak, E., Bijaoui, A.: Galaxy filament detection using the quality candy model. In: IEEE International Conference on Acoustics Speech and Signal Processing Proceedings, vol. 2 (2006). https://doi.org/10.1109/ICASSP.2006.1660447

  17. Hall, P.: Introduction to the Theory of Coverage Processes. Probability and Mathematical Statistics. Wiley, Hoboken (1988)

    Google Scholar 

  18. Hartigan, J.A.: Clustering Algorithms. Wiley, Hoboken (1975)

    Google Scholar 

  19. Hartigan, J.A.: Consistency of single linkage for high-density clusters. J. Am. Stat. Ass. 76(374), 388–394 (1981). https://doi.org/10.1080/01621459.1981.10477658

    Article  MathSciNet  Google Scholar 

  20. Kuchner, et al.: An inventory of galaxies in cosmic filaments feeding galaxy clusters. MNRAS 510(1), 581–592 (2021). https://doi.org/10.1093/mnras/stab3419

  21. Kullback, S., Leibler, R.A.: On Information and Sufficiency. Ann. Math. Stat. 22(1), 79–86 (1951). https://doi.org/10.1214/aoms/1177729694

    Article  MathSciNet  Google Scholar 

  22. Libeskind, et al.: Tracing the cosmic web. MNRAS 473(1), 1195–1217 (2017). https://doi.org/10.1093/mnras/stx1976

  23. Meester, R., Roy, R.: Continuum Percolation. Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (1996). https://doi.org/10.1017/CBO9780511895357

  24. Olkin, I., Pukelsheim, F.: The distance between two random vectors with given dispersion matrices. Linear Algebra Appl. 48, 257–263 (1982). https://doi.org/10.1016/0024-3795(82)90112-4

    Article  MathSciNet  Google Scholar 

  25. Penrose, M.: Random Geometric Graphs, vol. 5. Oxford University Press, Oxford (2003). https://doi.org/10.1093/acprof:oso/9780198506263.001.0001

  26. Penrose, M.: Random Euclidean coverage from within. Probab. Theory Relat. Fields 185(3–4), 747–814 (2023). https://doi.org/10.1007/s00440-022-01182-5

    Article  MathSciNet  Google Scholar 

  27. Quintanilla, J., Torquato, S., Ziff, R.: Efficient measurement of the percolation threshold for fully penetrable discs. J. Phys. A 33(42), L399–L407 (2000). https://doi.org/10.1088/0305-4470/33/42/104

    Article  MathSciNet  Google Scholar 

  28. Schaap, W.E.: Dtfe : the delaunay tessellation field estimator. Ph.D. thesis, Proefschrift Rijksuniversiteit Groningen (2007)

    Google Scholar 

  29. Stoica, R., Martínez, V., Mateu, J., Saar, E.: Detection of cosmic filaments using the candy model. Astron. Astrophys. 434(2), 423–432 (2005). https://doi.org/10.1051/0004-6361:20042409

    Article  Google Scholar 

  30. Tanemura, H.: Critical behavior for a continuum percolation model. Probability Theory and Mathematical Statistics, pp. 485–495 (1996)

    Google Scholar 

  31. Tempel, E., Stoica, R., Kipper, R., Saar, E.: Bisous model. detect. filam. Patterns in p.p. A & C 16, 17–25 (2016). https://doi.org/10.1016/j.ascom.2016.03.004

  32. Vaserstein, L.N.: Markov processes over denumerable products of spaces, describing large systems of automata. Problemy Peredači Informacii 5(3), 64–72 (1969)

    MathSciNet  Google Scholar 

  33. Vinay Kumar, B., Kashyap, N., Yogeshwaran, D.: An analysis of probabilistic forwarding of coded packets on random geometric graphs. Perform. Eval. 160, 102,343 (2023). https://doi.org/10.1016/j.peva.2023.102343

  34. Xu, W., Wang, J., Hu, H., Deng, Y.: Critical polyn. in the nonplanar and cont. Percol. Models. Phys. Rev. 103, 022,127 (2021). https://doi.org/10.1103/PhysRevE.103.022127

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis Hauseux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hauseux, L., Avrachenkov, K., Zerubia, J. (2024). Graph Based Approach for Galaxy Filament Extraction. In: Cherifi, H., Rocha, L.M., Cherifi, C., Donduran, M. (eds) Complex Networks & Their Applications XII. COMPLEX NETWORKS 2023. Studies in Computational Intelligence, vol 1143. Springer, Cham. https://doi.org/10.1007/978-3-031-53472-0_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53472-0_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53471-3

  • Online ISBN: 978-3-031-53472-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics