Abstract
We propose an original density estimator built from a cloud of points \( \mathcal {X}^{}_{ } \subset \mathbb R ^d\). To do this, we consider geometric graphs \(\mathcal {G}(\mathcal {X}^{}_{ }, \ r)\) on the cloud. These graphs depend on a radius r. By varying the radius, we see the emergence of large components around certain critical radii, which is the phenomenon of continuum percolation. Percolation allows us to have both a local view of the data (through local constraints on the radius r) and a global one (the emergence of macro-structures). With this tool, we address the problem of galaxy filament extraction. The density estimator gives us a relevant graph on galaxies. With an algorithm sharing the ideas of the Fréchet mean, we extract a subgraph from this graph, the galaxy filaments.
The first author would like to thank the Université Côte d’Azur (UCA) DS4H Investments in the Future project managed by the National Research Agency (ANR, reference number ANR-17-EURE-0004) and 3IA Côte d’Azur for partial funding of his PhD thesis. All the authors acknowledge a partial support by Nokia Bell Labs “Distributed Learning and Control for Network Analysis” and Bpifrance in collaboration with Airbus D &S (LiChIE contract, 2020–2024).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Those ‘filaments’ are relatively thick and have a non-negligible width; a real 1D-manifold would not have a density w.r.t. the Lebesgue measure.
- 2.
- 3.
Thanks to Vinay Kumar [33] for sharing the data.
- 4.
Thanks to the authors of the article “Detection of cosmic filaments using the Candy model” [29] for the generation of the data used herein. These data were kindly supplied by Radu Stoica, Enn Saar and Vicent Martínez.
References
2df galaxy redshift survey. 2dF Galaxy Redshift Survey 2dF Galaxy Redshift Survey
Sloan digital sky survey. http://www.sdss.org
Longair, M., Einasto, J. (eds.). The Large Scale Structure of the Universe, International Astronomical Union Symposia, vol. 79, p. 464. Springer, Tallinn (1978). https://doi.org/10.1007/978-94-009-9843-8
Attali, D., Boissonnat, J.D., Edelsbrunner, H.: Stability and Computation of Medial Axes - a State-of-the-Art Report, pp. 109–125. Springer (2009). https://doi.org/10.1007/b106657_6
Barrow, J.D., Bhavsar, S.P., Sonoda, D.H.: Minimal spanning trees, filaments and galaxy clustering. MNRAS 216(1), 17–35 (1985). https://doi.org/10.1093/mnras/216.1.17
Biau, G., Devroye, L.: Lectures on the Nearest Neighbor Method, vol. 246. Springer (2015). https://doi.org/10.1007/978-3-319-25388-6
Bobrowski, O., Kahle, M.: Topology of rand. geom. complexes: a survey. J. Appl. Comput. Top. 1, 331–364 (2018). https://doi.org/10.1007/s41468-017-0010-0
Boissonnat, J.D., Wintraecken, M.: The reach of subsets of manifolds. J. Appl. Comput. Top. 1–23 (2023). https://doi.org/10.1007/s41468-023-00116-x
Bollobás, B., Riordan, O.: Percolation. Cambridge University Press (2006). https://doi.org/10.1017/CBO9781139167383
Campello, R.J.G.B., Moulavi, D., Sander, J.: Density-based clustering based on hierarchical density estimates. In: Advances in Knowledge Discovery and Data Mining, pp. 160–172. Springer, Berlin (2013). https://doi.org/10.1007/978-3-642-37456-2_14
Colberg, J.M.: Quantifying cosmic superstructures. MNRAS 375(1), 337–347 (2007). https://doi.org/10.1111/j.1365-2966.2006.11312.x
Darvish, B., Mobasher, B., Sobral, D., Scoville, N., Aragon-Calvo, M.: A comparative study of density field estimation for galaxies. Astrophys. J. 805(2), 121 (2015). https://doi.org/10.1088/0004-637X/805/2/121
Einasto, J.: Large scale structure of the Universe. AIP Conf. Proc. 1205(1), 72–81 (2010). https://doi.org/10.1063/1.3382336
Ferdosi, B.J., Buddelmeijer, H., Trager, S.C., Wilkinson, M.H.F., Roerdink, J.B.T.M.: Comparison of density estimation methods for astronomical datasets. Astron. Astrophys. 531, A114 (2011). https://doi.org/10.1051/0004-6361/201116878
Fréchet, M.: L’intégrale abstraite d’une fonction abstraite d’une variable abstraite et son application à la moyenne d’un élément aléatoire de nature quelconque. La Revue Scientifique (1944)
Gernez, P., Descombes, X., Zerubia, J., Slezak, E., Bijaoui, A.: Galaxy filament detection using the quality candy model. In: IEEE International Conference on Acoustics Speech and Signal Processing Proceedings, vol. 2 (2006). https://doi.org/10.1109/ICASSP.2006.1660447
Hall, P.: Introduction to the Theory of Coverage Processes. Probability and Mathematical Statistics. Wiley, Hoboken (1988)
Hartigan, J.A.: Clustering Algorithms. Wiley, Hoboken (1975)
Hartigan, J.A.: Consistency of single linkage for high-density clusters. J. Am. Stat. Ass. 76(374), 388–394 (1981). https://doi.org/10.1080/01621459.1981.10477658
Kuchner, et al.: An inventory of galaxies in cosmic filaments feeding galaxy clusters. MNRAS 510(1), 581–592 (2021). https://doi.org/10.1093/mnras/stab3419
Kullback, S., Leibler, R.A.: On Information and Sufficiency. Ann. Math. Stat. 22(1), 79–86 (1951). https://doi.org/10.1214/aoms/1177729694
Libeskind, et al.: Tracing the cosmic web. MNRAS 473(1), 1195–1217 (2017). https://doi.org/10.1093/mnras/stx1976
Meester, R., Roy, R.: Continuum Percolation. Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (1996). https://doi.org/10.1017/CBO9780511895357
Olkin, I., Pukelsheim, F.: The distance between two random vectors with given dispersion matrices. Linear Algebra Appl. 48, 257–263 (1982). https://doi.org/10.1016/0024-3795(82)90112-4
Penrose, M.: Random Geometric Graphs, vol. 5. Oxford University Press, Oxford (2003). https://doi.org/10.1093/acprof:oso/9780198506263.001.0001
Penrose, M.: Random Euclidean coverage from within. Probab. Theory Relat. Fields 185(3–4), 747–814 (2023). https://doi.org/10.1007/s00440-022-01182-5
Quintanilla, J., Torquato, S., Ziff, R.: Efficient measurement of the percolation threshold for fully penetrable discs. J. Phys. A 33(42), L399–L407 (2000). https://doi.org/10.1088/0305-4470/33/42/104
Schaap, W.E.: Dtfe : the delaunay tessellation field estimator. Ph.D. thesis, Proefschrift Rijksuniversiteit Groningen (2007)
Stoica, R., Martínez, V., Mateu, J., Saar, E.: Detection of cosmic filaments using the candy model. Astron. Astrophys. 434(2), 423–432 (2005). https://doi.org/10.1051/0004-6361:20042409
Tanemura, H.: Critical behavior for a continuum percolation model. Probability Theory and Mathematical Statistics, pp. 485–495 (1996)
Tempel, E., Stoica, R., Kipper, R., Saar, E.: Bisous model. detect. filam. Patterns in p.p. A & C 16, 17–25 (2016). https://doi.org/10.1016/j.ascom.2016.03.004
Vaserstein, L.N.: Markov processes over denumerable products of spaces, describing large systems of automata. Problemy Peredači Informacii 5(3), 64–72 (1969)
Vinay Kumar, B., Kashyap, N., Yogeshwaran, D.: An analysis of probabilistic forwarding of coded packets on random geometric graphs. Perform. Eval. 160, 102,343 (2023). https://doi.org/10.1016/j.peva.2023.102343
Xu, W., Wang, J., Hu, H., Deng, Y.: Critical polyn. in the nonplanar and cont. Percol. Models. Phys. Rev. 103, 022,127 (2021). https://doi.org/10.1103/PhysRevE.103.022127
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Hauseux, L., Avrachenkov, K., Zerubia, J. (2024). Graph Based Approach for Galaxy Filament Extraction. In: Cherifi, H., Rocha, L.M., Cherifi, C., Donduran, M. (eds) Complex Networks & Their Applications XII. COMPLEX NETWORKS 2023. Studies in Computational Intelligence, vol 1143. Springer, Cham. https://doi.org/10.1007/978-3-031-53472-0_32
Download citation
DOI: https://doi.org/10.1007/978-3-031-53472-0_32
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-53471-3
Online ISBN: 978-3-031-53472-0
eBook Packages: EngineeringEngineering (R0)