Skip to main content

Efficient Complex Network Representation Using Prime Numbers

  • Conference paper
  • First Online:
Complex Networks & Their Applications XII (COMPLEX NETWORKS 2023)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1143))

Included in the following conference series:

  • 815 Accesses

Abstract

In this work, we propose a novel representation of complex networks, which is compact and enables very efficient network analysis. Multi-relational networks capture complex data relationships and have a wide range of applications. As they get to be used with ever larger quantities of data, it is crucial to find efficient ways to represent and analyse them. This paper introduces the concept of Prime Adjacency Matrices (PAMs), which utilize prime numbers, to represent the relations of the network. Due to the Fundamental Theorem of Arithmetic, this allows for a lossless, compact representation of a complete multi-relational graph, using a single adjacency matrix. Moreover, this representation enables the fast computation of multi-hop adjacency matrices, which can be useful for a variety of downstream tasks. We illustrate the benefits of using the proposed approach through various network analysis tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The code and related scripts can be found in https://github.com/SubmissionUser/CN_PAM.

References

  1. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.U.: Complex networks: structure and dynamics. Phys. Rep. 424(4–5), 175–308 (2006)

    Article  MathSciNet  Google Scholar 

  2. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: Advances in Neural Information Processing Systems, vol. 26 (2013)

    Google Scholar 

  3. Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Hruschka, E.R., Mitchell, T.M.: Toward an architecture for never-ending language learning. In: Twenty-Fourth AAAI Conference on Artificial Intelligence (2010)

    Google Scholar 

  4. Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2d knowledge graph embeddings. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

    Google Scholar 

  5. Edwards, G., Nilsson, S., Rozemberczki, B., Papa, E.: Explainable biomedical recommendations via reinforcement learning reasoning on knowledge graphs. arXiv preprint arXiv:2111.10625 (2021)

  6. Himmelstein, D.S., et al.: Systematic integration of biomedical knowledge prioritizes drugs for repurposing. Elife 6 (2017)

    Google Scholar 

  7. Ji, S., Pan, S., Cambria, E., Marttinen, P., Philip, S.Y.: A survey on knowledge graphs: representation, acquisition, and applications. IEEE Trans. Neural Netw. Learn. Syst. (2021)

    Google Scholar 

  8. Kriege, N.M., Giscard, P.L., Wilson, R.: On valid optimal assignment kernels and applications to graph classification. In: Advances in Neural Information Processing Systems, vol. 29 (2016)

    Google Scholar 

  9. Kriege, N.M., Johansson, F.D., Morris, C.: A survey on graph kernels. CoRR abs/1903.11835 (2019)

    Google Scholar 

  10. Liu, G., Yang, Q., Wang, H., Lin, X., Wittie, M.P.: Assessment of multi-hop interpersonal trust in social networks by three-valued subjective logic. In: IEEE INFOCOM Conference on Computer Communications, pp. 1698–1706. IEEE (2014)

    Google Scholar 

  11. Mahdisoltani, F., Biega, J., Suchanek, F.M.: YAGO3: a knowledge base from multilingual wikipedias. In: CIDR 2015, Seventh Biennial Conference on Innovative Data Systems Research, Asilomar, USA (2015)

    Google Scholar 

  12. Morris, C., Kriege, N.M., Bause, F., Kersting, K., Mutzel, P., Neumann, M.: TUDataset: a collection of benchmark datasets for learning with graphs. In: GRL+ Workshop in ICML 2020 Workshop (2020)

    Google Scholar 

  13. Safavi, T., Koutra, D.: Codex: a comprehensive knowledge graph completion benchmark (2020)

    Google Scholar 

  14. Sato, R.: A survey on the expressive power of graph neural networks. arXiv preprint arXiv:2003.04078 (2020)

  15. Sugiyama, M., Borgwardt, K.: Halting in random walk kernels. In: Advances in Neural Information Processing Systems, vol. 28 (2015)

    Google Scholar 

  16. Sun, Z., Deng, Z.H., Nie, J.Y., Tang, J.: Rotate: knowledge graph embedding by relational rotation in complex space. arXiv preprint arXiv:1902.10197 (2019)

  17. Toutanova, K., Chen, D., Pantel, P., Poon, H., Choudhury, P., Gamon, M.: Representing text for joint embedding of text and knowledge bases. In: Proceedings of the EMNLP Conference, pp. 1499–1509 (2015)

    Google Scholar 

  18. Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embeddings for simple link prediction. In: International Conference on Machine Learning, pp. 2071–2080. PMLR (2016)

    Google Scholar 

  19. Wang, H., Ren, H., Leskovec, J.: Relational message passing for knowledge graph completion. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery, Data Mining, KDD 2021, pp. 1697–1707. NY, USA (2021)

    Google Scholar 

  20. Wang, Q., Mao, Z., Wang, B., Guo, L.: Knowledge graph embedding: a survey of approaches and applications. IEEE Trans. Knowl. Data Eng. 29(12), 2724–2743 (2017)

    Article  Google Scholar 

  21. Xiong, W., Hoang, T., Wang, W.Y.: DeepPath: a reinforcement learning method for knowledge graph reasoning. CoRR abs/1707.06690 (2017)

    Google Scholar 

  22. Yang, B., Yih, W.T., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and inference in knowledge bases. arXiv preprint arXiv:1412.6575 (2014)

  23. Zhang, S., Tay, Y., Yao, L., Liu, Q.: Quaternion knowledge graph embeddings. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  24. Zhou, J., et al.: Graph neural networks: a review of methods and applications. In: AI Open, pp. 57–81 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos Bougiatiotis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bougiatiotis, K., Paliouras, G. (2024). Efficient Complex Network Representation Using Prime Numbers. In: Cherifi, H., Rocha, L.M., Cherifi, C., Donduran, M. (eds) Complex Networks & Their Applications XII. COMPLEX NETWORKS 2023. Studies in Computational Intelligence, vol 1143. Springer, Cham. https://doi.org/10.1007/978-3-031-53472-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53472-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53471-3

  • Online ISBN: 978-3-031-53472-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics