Skip to main content

Effects of Null Model Choice on Modularity Maximization

  • Conference paper
  • First Online:
Complex Networks & Their Applications XII (COMPLEX NETWORKS 2023)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1142))

Included in the following conference series:

  • 827 Accesses

Abstract

Given a defined set of communities, modularity is computed by comparing each existing edge with its probability of occurrence in a random graph null model. The heuristic has historically garnered a wealth of attention, and many community detection algorithms have been designed around maximizing modularity. Despite this, there are potential issues with the Chung-Lu null graph model that underpins the heuristic. In this manuscript, we explore the output communities given by modularity maximization when this null model is subject to change. We construct two null models using iterated double edge swapping and maximum likelihood estimation, and we use these models as the basis for new modularity-like heuristics we call desmod, and mlemod. We compare the clusters output by standard modularity maximization with those output by our methods on a test suite of LFR benchmark graphs and find that changing the null model consistently increases the normalized mutual information scores when the mixing parameter is high.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    One of the major issues is that a majority of graphs studied in community detection fall squarely in the simple graph space. We note this applies to LFR and similar benchmark graphs and a large proportion of the real-world graphs with defined communities; e.g., those listed in the SNAP repository.

  2. 2.

    Implemented via the greedy_modularity_communities(\(\cdot \)) function.

  3. 3.

    We chose \(\tau _2 = 1.1\), as NetworkX failed to generate graphs using \(\tau _2 = 1.0\).

  4. 4.

    Here, ‘real attachment probabilities’ are those determined for an appropriate simple graph null model under an appropriate sampling methodology.

References

  1. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech: Theory Exp. 2008(10), P10008 (2008)

    Article  Google Scholar 

  2. Brissette, C., Liu, D., Slota, G.M.: Correcting output degree sequences in Chung-Lu random graph generation. In: Cherifi, H., Mantegna, R.N., Rocha, L.M., Cherifi, C., Micciche, S. (eds.) COMPLEX NETWORKS 2016 2022, vol. 1078, pp. 69–80. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-21131-7_6

    Chapter  Google Scholar 

  3. Brissette, C., Slota, G.M.: Limitations of Chung Lu random graph generation. In: Benito, R.M., Cherifi, C., Cherifi, H., Moro, E., Rocha, L.M., Sales-Pardo, M. (eds.) COMPLEX NETWORKS 2021, vol. 1072, pp. 451–462. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-93409-5_38

    Chapter  Google Scholar 

  4. Britton, T., Deijfen, M., Martin-Löf, A.: Generating simple random graphs with prescribed degree distribution. J. Stat. Phys. 124(6), 1377–1397 (2006)

    Article  MathSciNet  Google Scholar 

  5. Catanzaro, M., Caldarelli, G., Pietronero, L.: Assortative model for social networks. Phys. Rev. E 70(3), 037101 (2004)

    Article  Google Scholar 

  6. Chen, M., Kuzmin, K., Szymanski, B.K.: Community detection via maximization of modularity and its variants. IEEE Trans. Comput. Soc. Syst. 1(1), 46–65 (2014)

    Article  Google Scholar 

  7. Chunaev, P.: Community detection in node-attributed social networks: a survey. Comput. Sci. Rev. 37, 100286 (2020)

    Article  MathSciNet  Google Scholar 

  8. Chung, F., Lu, L.: The average distances in random graphs with given expected degrees. Proc. Natl. Acad. Sci. 99(25), 15879–15882 (2002)

    Article  MathSciNet  Google Scholar 

  9. Clauset, A., Newman, M.E., Moore, C.: Finding community structure in very large networks. Phys. Rev. E 70(6), 066111 (2004)

    Article  Google Scholar 

  10. Despalatović, L., Vojković, T., Vukicević, D.: Community structure in networks: Girvan-newman algorithm improvement. In: 2014 37th international convention on information and communication technology, electronics and microelectronics (MIPRO), pp. 997–1002. IEEE (2014)

    Google Scholar 

  11. Drobyshevskiy, M., Turdakov, D.: Random graph modeling: a survey of the concepts. ACM Comput. Surv. (CSUR) 52(6), 1–36 (2019)

    Article  Google Scholar 

  12. Durak, N., Kolda, T.G., Pinar, A., Seshadhri, C.: A scalable null model for directed graphs matching all degree distributions: in, out, and reciprocal. In: 2013 IEEE 2nd Network Science Workshop (NSW), pp. 23–30. IEEE (2013)

    Google Scholar 

  13. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3–5), 75–174 (2010)

    Article  MathSciNet  Google Scholar 

  14. Fortunato, S., Barthelemy, M.: Resolution limit in community detection. Proc. Natl. Acad. Sci. 104(1), 36–41 (2007)

    Article  Google Scholar 

  15. Fortunato, S., Hric, D.: Community detection in networks: a user guide. Phys. Rep. 659, 1–44 (2016)

    Article  MathSciNet  Google Scholar 

  16. Fosdick, B.K., Larremore, D.B., Nishimura, J., Ugander, J.: Configuring random graph models with fixed degree sequences. SIAM Rev. 60(2), 315–355 (2018)

    Article  MathSciNet  Google Scholar 

  17. Garbus, J., Brissette, C., Slota, G.M.: Parallel generation of simple null graph models. In: The 5th IEEE Workshop on Parallel and Distributed Processing for Computational Social Systems (ParSocial) (2020)

    Google Scholar 

  18. Good, B.H., De Montjoye, Y.A., Clauset, A.: Performance of modularity maximization in practical contexts. Phys. Rev. E 81(4), 046106 (2010)

    Article  MathSciNet  Google Scholar 

  19. Jin, D., et al.: A survey of community detection approaches: from statistical modeling to deep learning. IEEE Trans. Knowl. Data Eng. 35(10), 1149–1170 (2021)

    Google Scholar 

  20. Kishore, R., Gogineni, A.K., Nussinov, Z., Sahu, K.K.: A nature inspired modularity function for unsupervised learning involving spatially embedded networks. Sci. Rep. 9(1), 2631 (2019)

    Article  Google Scholar 

  21. Lancichinetti, A., Fortunato, S.: Community detection algorithms: a comparative analysis. Phys. Rev. E 80(5), 056117 (2009)

    Article  Google Scholar 

  22. Lancichinetti, A., Fortunato, S.: Limits of modularity maximization in community detection. Phys. Rev. E 84(6), 066122 (2011)

    Article  Google Scholar 

  23. Lancichinetti, A., Fortunato, S., Radicchi, F.: Benchmark graphs for testing community detection algorithms. Phys. Rev. E 78(4), 046110 (2008)

    Article  Google Scholar 

  24. Newman, M.E.: Assortative mixing in networks. Phys. Rev. Lett. 89(20), 208701 (2002)

    Article  Google Scholar 

  25. Newman, M.E.: Mixing patterns in networks. Phys. Rev. E 67(2), 026126 (2003)

    Article  MathSciNet  Google Scholar 

  26. Newman, M.E.: Modularity and community structure in networks. Proc. Natl. Acad. Sci. 103(23), 8577–8582 (2006)

    Article  Google Scholar 

  27. Slota, G.M., Berry, J., Hammond, S.D., Olivier, S., Phillips, C., Rajamanickam, S.: Scalable generation of graphs for benchmarking HPC community-detection algorithms. In: IEEE International Conference for High Performance Computing, Networking, Storage and Analysis (SC) (2019)

    Google Scholar 

  28. Slota, G.M., Garbus, J.: A parallel LFR-like benchmark for evaluating community detection algorithms. In: The 5th IEEE Workshop on Parallel and Distributed Processing for Computational Social Systems (ParSocial) (2020)

    Google Scholar 

  29. Vinh, N.X., Epps, J., Bailey, J.: Information theoretic measures for clusterings comparison: is a correction for chance necessary? In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 1073–1080 (2009)

    Google Scholar 

  30. Winlaw, M., DeSterck, H., Sanders, G.: An in-depth analysis of the Chung-Lu model. Technical report, Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States) (2015)

    Google Scholar 

  31. Xie, J., Kelley, S., Szymanski, B.K.: Overlapping community detection in networks: the state-of-the-art and comparative study. ACM Computing Surveys (CSUR) 45(4), 1–35 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George M. Slota .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Brissette, C., Pandey, U., Slota, G.M. (2024). Effects of Null Model Choice on Modularity Maximization. In: Cherifi, H., Rocha, L.M., Cherifi, C., Donduran, M. (eds) Complex Networks & Their Applications XII. COMPLEX NETWORKS 2023. Studies in Computational Intelligence, vol 1142. Springer, Cham. https://doi.org/10.1007/978-3-031-53499-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53499-7_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53498-0

  • Online ISBN: 978-3-031-53499-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics