Skip to main content

New Seeding Strategies for the Influence Maximization Problem

  • Conference paper
  • First Online:
Complex Networks & Their Applications XII (COMPLEX NETWORKS 2023)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1142))

Included in the following conference series:

  • 992 Accesses

Abstract

We present two new seeding strategies for the Influence Maximization Problem for Viral Marketing, based on graph connectivity and spectral graph theory. Specifically, the first approach CVSP uses the cut vertices and the separation pairs as the starting seeds. The second approach ER uses the vertex ranking based on the effective resistance values of the incident edges. CVSP and ER are efficient, and can be implemented in linear and near linear time, respectively.

Experiments using the Independent Cascade diffusion model with real-world data sets show that our new seeding strategies perform significantly better than the existing methods, such as centrality measures, k-core and the state-of-the-art IMM, in particular for the scale-free networks with globally sparse, locally dense clusters with small diameters, in the final influence spread. Moreover, visual analysis enables more refined comparison between the methods, demonstrating that our methods have more globally wide influence spread pattern than other methods with locally dense influence spread pattern.

This work is supported by ARC grant DP190103301.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Batagelj, V., Mrvar, A., Zaveršnik, M.: Partitioning approach to visualization of large graphs. In: GD 1999, pp. 90–97 (1999)

    Google Scholar 

  2. Borgs, C., Brautbar, M., Chayes, J., Lucier, B.: Maximizing social influence in nearly optimal time. In: SODA 2014, pp. 946–957 (2014)

    Google Scholar 

  3. Chen, D., Lü, L., Shang, M.S., Zhang, Y.C., Zhou, T.: Identifying influential nodes in complex networks. Phys. A 391(4), 1777–1787 (2012)

    Article  Google Scholar 

  4. Domingos, P., Richardson, M.: Mining the network value of customers. In: SIGKDD 2001, pp. 57–66 (2001)

    Google Scholar 

  5. Gui-sheng, Y., Ji-jie, W., Hong-bin, D., Jia, L.: Intelligent viral marketing algorithm over online social network. In: ICNDC 2011, pp. 319–323 (2011)

    Google Scholar 

  6. Hopcroft, J., Tarjan, R.: Algorithm 447: efficient algorithms for graph manipulation. Commun. ACM 16(6), 372–378 (1973)

    Article  Google Scholar 

  7. Hopcroft, J.E., Tarjan, R.E.: Dividing a graph into triconnected components. SIAM J. Comput. 2(3), 135–158 (1973)

    Article  MathSciNet  Google Scholar 

  8. Iyer, S., Killingback, T., Sundaram, B., Wang, Z.: Attack robustness and centrality of complex networks. PLoS ONE 8(4), e59,613 (2013)

    Google Scholar 

  9. Jacob, R., Koschützki, D., Lehmann, K.A., Peeters, L., Tenfelde-Podehl, D.: Algorithms for centrality indices. In: Brandes, U., Erlebach, T. (eds.) Network Analysis. LNCS, vol. 3418, pp. 62–82. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31955-9_4

    Chapter  Google Scholar 

  10. Kaplan, A.M., Haenlein, M.: Two hearts in three-quarter time: how to waltz the social media/viral marketing dance. Bus. Horiz. 54(3), 253–263 (2011)

    Article  Google Scholar 

  11. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network. In: SIGKDD 2003, pp. 137–146 (2003)

    Google Scholar 

  12. Kempe, D., Kleinberg, J., Tardos, É.: Influential nodes in a diffusion model for social networks. In: ICALP 2005, pp. 1127–1138 (2005)

    Google Scholar 

  13. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network. Theory Comput. 11(4), 105–147 (2015)

    Article  MathSciNet  Google Scholar 

  14. Kitsak, M., et al.: Identification of influential spreaders in complex networks. Nat. Phys. 6(11), 888–893 (2010)

    Article  Google Scholar 

  15. Leskovec, J., Adamic, L.A., Huberman, B.A.: The dynamics of viral marketing. ACM Trans. Web (TWEB) 1(1), 5–es (2007)

    Google Scholar 

  16. Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., Faloutsos, C., VanBriesen, J., Glance, N.: Cost-effective outbreak detection in networks. In: SIGKDD 2007, KDD 2007, pp. 420–429 (2007)

    Google Scholar 

  17. Liu, J.G., Lin, J.H., Guo, Q., Zhou, T.: Locating influential nodes via dynamics-sensitive centrality. Sci. Rep. 6(1), 1–8 (2016)

    Google Scholar 

  18. Liu, Y., Tang, M., Zhou, T., Do, Y.: Core-like groups result in invalidation of identifying super-spreader by k-shell decomposition. Sci. Rep. 5(1), 1–8 (2015)

    Google Scholar 

  19. Long, C., Wong, R.C.W.: Viral marketing for dedicated customers. Inf. Syst. 46, 1–23 (2014)

    Article  Google Scholar 

  20. Lü, L., Chen, D., Ren, X.L., Zhang, Q.M., Zhang, Y.C., Zhou, T.: Vital nodes identification in complex networks. Phys. Rep. 650, 1–63 (2016)

    Article  MathSciNet  Google Scholar 

  21. Marner, M.R., Smith, R.T., Thomas, B.H., Klein, K., Eades, P., Hong, S.H.: Gion: interactively untangling large graphs on wall-sized displays. In: GD 2014, pp. 113–124 (2014)

    Google Scholar 

  22. Richardson, M., Domingos, P.: Mining knowledge-sharing sites for viral marketing. In: SIGKDD 2002, pp. 61–70 (2002)

    Google Scholar 

  23. Shakarian, P., Bhatnagar, A., Aleali, A., Shaabani, E., Guo, R.: Diffusion in Social Networks. SCS, Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23105-1

    Book  Google Scholar 

  24. Spielman, D.A., Srivastava, N.: Graph sparsification by effective resistances. SIAM J. Comput. 40(6), 1913–1926 (2011)

    Article  MathSciNet  Google Scholar 

  25. Spielman, D.A., Teng, S.H.: Spectral sparsification of graphs. SIAM J. Comput. 40(4), 981–1025 (2011)

    Article  MathSciNet  Google Scholar 

  26. Tang, Y., Shi, Y., Xiao, X.: Influence maximization in near-linear time: a martingale approach. In: SIGMOD 2015, pp. 1539–1554 (2015)

    Google Scholar 

  27. Wasserman, S., Faust, K., et al.: Social network analysis: methods and applications (1994)

    Google Scholar 

  28. Zhu, T., Wang, B., Wu, B., Zhu, C.: Maximizing the spread of influence ranking in social networks. Inf. Sci. 278, 535–544 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seok-Hee Hong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hong, SH., Ataides, J.P.B., Kok, R., Meidiana, A., Park, K. (2024). New Seeding Strategies for the Influence Maximization Problem. In: Cherifi, H., Rocha, L.M., Cherifi, C., Donduran, M. (eds) Complex Networks & Their Applications XII. COMPLEX NETWORKS 2023. Studies in Computational Intelligence, vol 1142. Springer, Cham. https://doi.org/10.1007/978-3-031-53499-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53499-7_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53498-0

  • Online ISBN: 978-3-031-53499-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics