Skip to main content

On the Relation Between Replicator Evolutionary Dynamics and Diffusive Models on General Networks

  • Conference paper
  • First Online:
Complex Networks & Their Applications XII (COMPLEX NETWORKS 2023)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1142))

Included in the following conference series:

  • 825 Accesses

Abstract

Understanding how cooperation spreads across social groups is fundamental in predicting how people will interact with each other in relation to the use and exploitation of the resources they are provided with. When social interactions can be mapped to a network, questions arise about the impact of the connection structure which can benefit from the literature developed for a dynamical systems. One model that is widely used as a model to understand the dynamics of cooperation is the replicator equation. While research has been proposed to adapt that equation to a structured graph, we offer a straightforward approach by benefiting from the networked SI diffusion model and replicator equation to create a replicator equation on a network with state-dependent diffusive constant. This approach can be applied to any network structure and features separation of the game and the information diffusion mechanism. The equilibria towards which the system evolves are here characterised and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bullo, F.: Lectures on Network Systems (2018)

    Google Scholar 

  2. Cassese, D.: Replicator equation on networks with degree regular communities. Appl. Network Sci. 3, 29 (2018). https://doi.org/10.1007/s41109-018-0083-2

    Article  Google Scholar 

  3. Das, S., Eksin, C.: Approximate submodularity of maximizing anticoordination in network games. In: 2022 IEEE 61st Conference on Decision and Control (CDC), pp. 3151–3157 (2022). https://doi.org/10.1109/CDC51059.2022.9993180

  4. Du, J., Wu, Z.: Evolutionary dynamics of cooperation in dynamic networked systems with active striving mechanism. Appl. Math. Comput. 430, 127295 (2022). https://doi.org/10.1016/J.AMC.2022.127295

    Article  MathSciNet  Google Scholar 

  5. Ghivarello, S., Antonioni, A.: Coevolution of individual perception and cooperative behavior in the norm compliance dilemma (2022)

    Google Scholar 

  6. Hilbe, C.: Local replicator dynamics: a simple link between deterministic and stochastic models of evolutionary game theory. Bull. Math. Biol. 73, 2068–2087 (2011). https://doi.org/10.1007/s11538-010-9608-2

    Article  MathSciNet  Google Scholar 

  7. Li, J.Y., Wu, W.H., Li, Z.Z., Wang, W.X., Zhang, B.: Data-driven evolutionary game models for the spread of fairness and cooperation in heterogeneous networks. Front. Psychiatry 14, 1131769 (2023). https://doi.org/10.3389/fpsyt.2023.1131769

    Article  Google Scholar 

  8. Lleberman, E., Hauert, C., Howak, M.A.: Evolutionary dynamics on graphs. Nature 433, 312–316 (2005). https://doi.org/10.1038/nature03204

    Article  Google Scholar 

  9. Mieghem, P.V., Omic, J., Kooij, R.: Virus spread in networks. IEEE/ACM Trans. Networking 17, 1–14 (2009). https://doi.org/10.1109/TNET.2008.925623

    Article  Google Scholar 

  10. Nowak, M.A., May, R.M.: Evolutionary games and spatial chaos. Nature 359, 826–829 (1992). https://doi.org/10.1038/359826a0

    Article  Google Scholar 

  11. Ohtsuki, H., Nowak, M.A.: The replicator equation on graphs. J. Theor. Biol. 243, 86–97 (2006). https://doi.org/10.1016/j.jtbi.2006.06.004

    Article  MathSciNet  Google Scholar 

  12. Perc, M., Gómez-Gardeñes, J., Szolnoki, A., Floría, L.M., Moreno, Y.: Evolutionary dynamics of group interactions on structured populations: a review. J. R. Soc. Interface 10, 20120997 (2013). https://doi.org/10.1098/rsif.2012.0997

    Article  Google Scholar 

  13. Perc, M., Jordan, J.J., Rand, D.G., Wang, Z., Boccaletti, S., Szolnoki, A.: Statistical physics of human cooperation. Phys. Rep. 687, 1–51 (2017). https://doi.org/10.1016/j.physrep.2017.05.004

    Article  MathSciNet  Google Scholar 

  14. Requejo, R.J., Díaz-Guilera, A.: Replicator dynamics with diffusion on multiplex networks. Phys. Rev. E 94, 022301 (2016). https://doi.org/10.1103/PhysRevE.94.022301

    Article  Google Scholar 

  15. Riehl, J.R., Cao, M.: Towards control of evolutionary games on networks. In: 53rd IEEE Conference on Decision and Control, pp. 2877–2882 (2014). https://doi.org/10.1109/CDC.2014.7039831

  16. Riehl, J.R., Cao, M.: Towards optimal control of evolutionary games on networks. IEEE Trans. Autom. Control 62, 458–462 (2017). https://doi.org/10.1109/TAC.2016.2558290

    Article  MathSciNet  Google Scholar 

  17. Santos, F.C., Pacheco, J.M.: Scale-free networks provide a unifying framework for the emergence of cooperation. Phys. Rev. Lett. 95, 098104 (2005). https://doi.org/10.1103/PhysRevLett.95.098104

    Article  Google Scholar 

  18. Szolnoki, A., Perc, M.: Reward and cooperation in the spatial public goods game. Europhys. Lett.=Europhys. Lett. 92, 38003 (2010). https://doi.org/10.1209/0295-5075/92/38003

    Article  Google Scholar 

  19. Tan, S., Wang, Y.: Graphical nash equilibria and replicator dynamics on complex networks. IEEE Trans. Neural Networks Learn. Syst. 31, 1831–1842 (2020). https://doi.org/10.1109/TNNLS.2019.2927233

    Article  MathSciNet  Google Scholar 

  20. Taylor, P.D., Jonker, L.B.: Evolutionary stable strategies and game dynamics. Math. Biosci. 40, 145–156 (1978). https://doi.org/10.1016/0025-5564(78)90077-9

    Article  MathSciNet  Google Scholar 

  21. Veelen, M.V.: The replicator dynamics with n players and population structure. J. Theor. Biol. 276, 78–85 (2011). https://doi.org/10.1016/j.jtbi.2011.01.044

    Article  MathSciNet  Google Scholar 

  22. Wang, S., Chen, X., Xiao, Z., Szolnoki, A.: Decentralized incentives for general well-being in networked public goods game. Appl. Math. Comput. 431, 127308 (2022)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

This work funding was supported by Puslapdik BPI (Pusat Layanan Pendidikan Beasiswa Pendidikan Indonesia) Ministry of Education, Culture, Research and Technology of Indonesia, LPDP (Lembaga Pengelola Dana Pendidikan) Ministry of Finance of Indonesia, and Telkom University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rio Aurachman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aurachman, R., Punzo, G. (2024). On the Relation Between Replicator Evolutionary Dynamics and Diffusive Models on General Networks. In: Cherifi, H., Rocha, L.M., Cherifi, C., Donduran, M. (eds) Complex Networks & Their Applications XII. COMPLEX NETWORKS 2023. Studies in Computational Intelligence, vol 1142. Springer, Cham. https://doi.org/10.1007/978-3-031-53499-7_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53499-7_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53498-0

  • Online ISBN: 978-3-031-53499-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics