Skip to main content

A Novel Method for Vertex Clustering in Dynamic Networks

  • Conference paper
  • First Online:
Complex Networks & Their Applications XII (COMPLEX NETWORKS 2023)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1142))

Included in the following conference series:

  • 837 Accesses

Abstract

In this paper, we introduce spatiotemporal graph \( k \)-means (STG\(k\)M), a novel, unsupervised method to cluster vertices within a dynamic network. Drawing inspiration from traditional \( k \)-means, STG\(k\)M finds both short-term dynamic clusters and a “long-lived” partitioning of vertices within a network whose topology is evolving over time. We provide an exposition of the algorithm, illuminate its operation on synthetic data, and apply it to detect political parties from a dynamic network of voting data in the United States House of Representatives. One of the main advantages of STGkM is that it has only one required parameter, namely \( k \); we therefore include an analysis of the range of this parameter and guidance on selecting its optimal value. We also give certain theoretical guarantees about the correctness of our algorithm.

Both authors contributed equally to this work.

See https://github.com/dynestic/stgkm for the associated code for this project.

We would like to acknowledge J. Nathan Kutz (U. of Washington) for his support.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Our approach is perhaps more analogous to \( k \)-medoids, but in a network context, the distinction between \( k \)-means and \( k \)-medoids is not obvious.

  2. 2.

    If no weight functions are provided or if the weight functions only output natural numbers, then \( \delta \) will assign only natural numbers.

  3. 3.

    To see why, observe that \( k \)-medoids is \( \textsf{NP} \)-hard [20].

  4. 4.

    In the worst case, e.g. when the graph is complete at every time step, optimizing this objective is still \( \textsf{NP} \)-hard, but in practice, it makes STG\(k\)M tractable.

References

  1. Becker, R., et al.: Giant components in random temporal graphs. arXiv preprint arXiv:2205.14888 (2022)

  2. Bergamini, E., Meyerhenke, H.: Approximating betweenness centrality in fully dynamic networks. Internet Math. 12(5), 281–314 (2016)

    Article  MathSciNet  Google Scholar 

  3. Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs and dynamic networks. Int. J. Parallel Emergent Distrib. Syst. 27(5), 387–408 (2012)

    Article  Google Scholar 

  4. Chakrabarti, D., Kumar, R., Tomkins, A.: Evolutionary clustering. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 554–560 (2006)

    Google Scholar 

  5. Chi, Y., Song, X., Zhou, D., Hino, K., Tseng, B.L.: Evolutionary spectral clustering by incorporating temporal smoothness. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 153–162 (2007)

    Google Scholar 

  6. Cleveland, J., et al.: Introducing tropical geometric approaches to delay tolerant networking optimization. In: 2022 IEEE Aerospace Conference (AERO), pp. 1–11 (2022)

    Google Scholar 

  7. Dabke, D.V., Dorabiala, O.: Spatiotemporal graph k-means. In: Proceedings of the Communities in Networks ComNets @ NetSci 2023 (2023)

    Google Scholar 

  8. Dabke, D.V., Karntikoon, K., Aluru, C., Singh, M., Chazelle, B.: Network-augmented compartmental models to track asymptomatic disease spread. Bioinform. Adv. 3, vbad082 (2023)

    Article  Google Scholar 

  9. DiTursi, D.J., Ghosh, G., Bogdanov, P.: Local community detection in dynamic networks. In: 2017 IEEE International Conference on Data Mining (ICDM), pp. 847–852 (2017)

    Google Scholar 

  10. Dorabiala, O., Webster, J., Kutz, N., Aravkin, A.: Spatiotemporal k-means. arXiv preprint arXiv:2211.05337 (2022)

  11. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3–5), 75–174 (2010)

    Article  MathSciNet  Google Scholar 

  12. Görke, R., Maillard, P., Schumm, A., Staudt, C., Wagner, D.: Dynamic graph clustering combining modularity and smoothness. J. Exp. Algorithmics 18, 1–1 (2013)

    Article  MathSciNet  Google Scholar 

  13. Gurukar, S., Ranu, S., Ravindran, B.: Commit: a scalable approach to mining communication motifs from dynamic networks. In: Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, SIGMOD 2015, pp. 475–489. Association for Computing Machinery, New York (2015)

    Google Scholar 

  14. Habiba, C.T., Tanya, Y.: Berger-Wolf. Betweenness centrality measure in dynamic networks, Technical Report 19, DIMACS (2007)

    Google Scholar 

  15. Hylton, A., et al.: A survey of mathematical structures for lunar networks. In: 2022 IEEE Aerospace Conference (AERO), pp. 1–17 (2022)

    Google Scholar 

  16. Kodinariya, T.M., Makwana, P.R., et al.: Review on determining number of cluster in k-means clustering. Int. J. 1(6), 90–95 (2013)

    Google Scholar 

  17. Latapy, M., Viard, T., Magnien, C.: Stream graphs and link streams for the modeling of interactions over time. Soc. Netw. Anal. Min. 8(1), 61 (2018)

    Article  Google Scholar 

  18. Lerman, K., Ghosh, R., Kang, J.H.: Centrality metric for dynamic networks. In: Proceedings of the Eighth Workshop on Mining and Learning with Graphs, MLG 2010, pp. 70—77. Association for Computing Machinery, New York (2010)

    Google Scholar 

  19. Lin, Y.-R., Chi, Y., Zhu, S., Sundaram, H., Tseng, B.L.: FacetNet: a framework for analyzing communities and their evolutions in dynamic networks. In: Proceedings of the 17th International Conference on World Wide Web, pp. 685–694 (2008)

    Google Scholar 

  20. Megiddo, N., Supowit, K.J.: On the complexity of some common geometric location problems. SIAM J. Comput. 13(1), 182–196 (1984)

    Article  MathSciNet  Google Scholar 

  21. Reda, K., Tantipathananandh, C., Johnson, A., Leigh, J., Berger-Wolf, T.: Visualizing the evolution of community structures in dynamic social networks. In: Computer Graphics Forum, vol. 30, pp. 1061–1070. Wiley Online Library (2011)

    Google Scholar 

  22. Rossetti, G., Cazabet, R.: Community discovery in dynamic networks: a survey. ACM Comput. Surv. 51(2), 1–37 (2018)

    Article  Google Scholar 

  23. Ruan, B., Gan, J., Wu, H., Wirth, A.: Dynamic structural clustering on graphs. In: Proceedings of the 2021 International Conference on Management of Data, pp. 1491–1503 (2021)

    Google Scholar 

  24. Yao, Y., Joe-Wong, C.: Interpretable clustering on dynamic graphs with recurrent graph neural networks. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 4608–4616 (2021)

    Google Scholar 

  25. Yen, C.-C., Yeh, M.-Y., Chen, M.-S.: An efficient approach to updating closeness centrality and average path length in dynamic networks. In: 2013 IEEE 13th International Conference on Data Mining, pp. 867–876 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devavrat Vivek Dabke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dabke, D.V., Dorabiala, O. (2024). A Novel Method for Vertex Clustering in Dynamic Networks. In: Cherifi, H., Rocha, L.M., Cherifi, C., Donduran, M. (eds) Complex Networks & Their Applications XII. COMPLEX NETWORKS 2023. Studies in Computational Intelligence, vol 1142. Springer, Cham. https://doi.org/10.1007/978-3-031-53499-7_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53499-7_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53498-0

  • Online ISBN: 978-3-031-53499-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics