Skip to main content

Optimal Reconstruction of Graph Evolution Dynamics for Duplication-Based Models

  • Conference paper
  • First Online:
Complex Networks & Their Applications XII (COMPLEX NETWORKS 2023)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1142))

Included in the following conference series:

  • 822 Accesses

Abstract

The research on biological network evolution and graph growth models, such as the Duplication-Mutation with Random Mutation (DMR) model, enable us to characterize the protein interaction network’s evolutionary dynamics founded on duplication and divergence via mutation in a principled way. The existing approaches to reconstruct historical ancestral graphs for DMR model mainly focus on greedy approaches and results in suboptimal solutions. In this study, we come up with ILP-DMR, a novel Integer Linear Programming (ILP)-based formulation, to reconstruct historical PPI graphs by likelihood maximization over DMR model. We assess the effectiveness of our approach in reconstructing the history of synthetic as well as optimal history of the proteins from the families of bZIP transcription factors. In comparison to the existing techniques, solutions returned by our ILP-DMR have a higher likelihood and are more robust to model mismatch and noise in the data. Solutions extracted by ILP-DMR have a higher likelihood than the existing methods, and our solutions better agree with the biological findings of different studies. Our datasets and code are available at https://github.com/seferlab/dmrhistory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amoutzias, G., et al.: One billion years of bZIP transcription factor evolution: conservation and change in dimerization and DNA-binding site specificity. Mol. Biol. Evol. 24(3), 827–835 (2006)

    Article  Google Scholar 

  2. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  3. Colak, R., et al.: Dense graphlet statistics of protein interaction and random networks. Pac. Symp. Biocomput. 2009, 178–189 (2009)

    Google Scholar 

  4. Fong, J.H., Keating, A.E., Singh, M.: Predicting specificity in bZIP coiled-coil protein interactions. Genome Biol. 5(2), R11 (2004)

    Article  Google Scholar 

  5. Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual (2023). https://www.gurobi.com

  6. Jasra, A., Persing, A., Beskos, A., Heine, K., De Iorio, M.: Bayesian inference for duplication-mutation with complementarity network models. J. Comput. Biol. 22(11), 1025–1033 (2015)

    Article  MathSciNet  Google Scholar 

  7. Jin, Y., Turaev, D., Weinmaier, T., Rattei, T., Makse, H.A.: The evolutionary dynamics of protein-protein interaction networks inferred from the reconstruction of ancient networks. PLoS ONE 8(3), 1–15 (2013)

    Article  Google Scholar 

  8. Kendall, M.G.: The treatment of ties in ranking problems. Biometrika 33(3), 239–251 (1945)

    Article  MathSciNet  Google Scholar 

  9. Kriventseva, E.V., et al.: OrthoDB v10: sampling the diversity of animal, plant, fungal, protist, bacterial and viral genomes for evolutionary and functional annotations of orthologs. Nucleic Acids Res. 47(D1), D807–D811 (2018)

    Article  Google Scholar 

  10. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graphs over time: densification laws, shrinking diameters and possible explanations. In: KDD 2005, pp. 177-187. Association for Computing Machinery, New York (2005)

    Google Scholar 

  11. Li, S., Choi, K.P., Wu, T., Zhang, L.: Maximum likelihood inference of the evolutionary history of a PPI network from the duplication history of its proteins. IEEE/ACM Trans. Comput. Biol. Bioinf. 10(6), 1412–1421 (2013)

    Article  Google Scholar 

  12. Middendorf, M., Ziv, E., Wiggins, C.H.: Inferring network mechanisms: the drosophila melanogaster protein interaction network. Proc. Natl. Acad. Sci. 102(9), 3192–3197 (2005)

    Article  Google Scholar 

  13. Mitra, S., Ryoo, H.D.: The unfolded protein response in metazoan development. J. Cell Sci. 132(5), jcs217216 (2019)

    Article  Google Scholar 

  14. Navlakha, S., Kingsford, C.: Network archaeology: uncovering ancient networks from present-day interactions. PLoS Comput. Biol. 7(4), 1–16 (2011)

    Article  MathSciNet  Google Scholar 

  15. Patro, R., Sefer, E., Malin, J., Marçais, G., Navlakha, S., Kingsford, C.: Parsimonious reconstruction of network evolution. Algorithms Mol. Biol. 7(1), 25 (2012)

    Article  Google Scholar 

  16. Pinney, J.W., Amoutzias, G.D., Rattray, M., Robertson, D.L.: Reconstruction of ancestral protein interaction networks for the bZIP transcription factors. Proc. Natl. Acad. Sci. 104(51), 20449–20453 (2007)

    Article  Google Scholar 

  17. Rajan, V., Zhang, Z., Kingsford, C., Zhang, X.: Maximum likelihood reconstruction of ancestral networks by integer linear programming. Bioinformatics 37(8), 1083–1092 (2020)

    Article  Google Scholar 

  18. Shervashidze, N., Schweitzer, P., van Leeuwen, E.J., Mehlhorn, K., Borgwardt, K.M.: Weisfeiler-lehman graph kernels. J. Mach. Learn. Res. 12(77), 2539–2561 (2011)

    MathSciNet  Google Scholar 

  19. Sreedharan, J.K., Magner, A., Grama, A., Szpankowski, W.: Inferring temporal information from a snapshot of a dynamic network. Sci. Rep. 9(1), 3057 (2019)

    Article  Google Scholar 

  20. Vázquez, A., Flammini, A., Maritan, A., Vespignani, A.: Modeling of protein interaction networks. Complexus 1(1), 38–44 (2003)

    Article  Google Scholar 

  21. Vishwanathan, S.V.N., Schraudolph, N.N., Kondor, R., Borgwardt, K.M.: Graph kernels. J. Mach. Learn. Res. 11, 1201–1242 (2010)

    MathSciNet  Google Scholar 

  22. Wagner, A.: The yeast protein interaction network evolves rapidly and contains few redundant duplicate genes. Mol. Biol. Evol. 18(7), 1283–1292 (2001)

    Article  Google Scholar 

  23. Young, J.G., St-Onge, G., Laurence, E., Murphy, C., Hébert-Dufresne, L., Desrosiers, P.: Phase transition in the recoverability of network history. Phys. Rev. X 9, 041056 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emre Sefer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sefer, E., Gilmour, S. (2024). Optimal Reconstruction of Graph Evolution Dynamics for Duplication-Based Models. In: Cherifi, H., Rocha, L.M., Cherifi, C., Donduran, M. (eds) Complex Networks & Their Applications XII. COMPLEX NETWORKS 2023. Studies in Computational Intelligence, vol 1142. Springer, Cham. https://doi.org/10.1007/978-3-031-53499-7_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53499-7_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53498-0

  • Online ISBN: 978-3-031-53499-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics