Skip to main content

Unsupervised Anomaly Detection in 3D Brain FDG PET: A Benchmark of 17 VAE-Based Approaches

  • Conference paper
  • First Online:
Deep Generative Models (MICCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14533))

Abstract

The use of deep generative models for unsupervised anomaly detection is an area of research that has gained interest in recent years in the field of medical imaging. Among all the existing models, the variational autoencoder (VAE) has proven to be efficient while remaining simple to use. Much research to improve the original method has been achieved in the computer vision literature, but rarely translated to medical imaging applications. To fill this gap, we propose a benchmark of fifteen variants of VAE that we compare with a vanilla autoencoder and VAE for a neuroimaging use case relying on a simulation-based evaluation framework. The use case is the detection of anomalies related to Alzheimer’s disease and other dementias in 3D FDG PET.

We show that among the fifteen VAE variants tested, nine lead to a good reconstruction accuracy and are able to generate healthy-looking images. This indicates that many approaches developed for computer vision applications can generalize to the unsupervised detection of anomalies of various shapes, intensities and locations in 3D FDG PET. However, these models do not outperform the vanilla autoencoder and VAE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baur, C., Denner, S., Wiestler, B., Navab, N., Albarqouni, S.: Autoencoders for unsupervised anomaly segmentation in brain MR images: a comparative study. Media 69, 101952 (2021)

    Google Scholar 

  2. Burda, Y., Grosse, R.B., Salakhutdinov, R.: Importance weighted autoencoders. In: ICLR (2016)

    Google Scholar 

  3. Burgos, N., et al.: Anomaly detection for the individual analysis of brain PET images. J. Med. Imag. 8(2), 024003 (2021)

    Article  Google Scholar 

  4. Chadebec, C., Vincent, L.J., Allassonniere, S.: Pythae: unifying generative autoencoders in Python - a benchmarking use case. In: Thirty-sixth Conference on NeurIPS Datasets and Benchmarks Track (2022)

    Google Scholar 

  5. Chen, R.T., Li, X., Grosse, R.B., Duvenaud, D.K.: Isolating sources of disentanglement in variational autoencoders. In: Advances in NeurIPS, vol. 31 (2018)

    Google Scholar 

  6. Chen, X., Konukoglu, E.: Unsupervised detection of lesions in brain MRI using constrained adversarial auto-encoders. In: MIDL (2018)

    Google Scholar 

  7. Chen, X., Konukoglu, E.: Unsupervised abnormality detection in medical images with deep generative methods, pp. 303–324. Elsevier (2022)

    Google Scholar 

  8. Chételat, G., et al.: Amyloid-PET and 18F-FDG-PET in the diagnostic investigation of Alzheimer’s disease and other dementias. Lancet Neurol. 19(11), 951–962 (2020)

    Article  Google Scholar 

  9. Choi, H., Ha, S., Kang, H., Lee, H., Lee, D.S.: Deep learning only by normal brain PET identify unheralded brain anomalies. EBioMedicine 43, 447–453 (2019)

    Article  Google Scholar 

  10. Fernando, T., Gammulle, H., Denman, S., Sridharan, S., Fookes, C.: Deep learning for medical anomaly detection - a survey. ACM Comput. Surv. 54(7), 1–37 (2021)

    Article  Google Scholar 

  11. Ghosh, P., Sajjadi, M.S., Vergari, A., Black, M., Schölkopf, B.: From variational to deterministic autoencoders (2019). arXiv:1903.12436

  12. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in NeurIPS, vol. 27 (2014)

    Google Scholar 

  13. Hassanaly, R., Bottani, S., Sauty, B., Colliot, O., Burgos, N.: Simulation-based evaluation framework for deep learning unsupervised anomaly detection on brain FDG PET. In: SPIE Medical Imaging (2023)

    Google Scholar 

  14. Higgins, I., et al.: beta-VAE: learning basic visual concepts with a constrained variational framework. In: ICLR (2017)

    Google Scholar 

  15. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. In: Advances in NeurIPS, vol. 33, pp. 6840–6851 (2020)

    Google Scholar 

  16. Jack, C.R., et al.: A/T/N: an unbiased descriptive classification scheme for Alzheimer disease biomarkers. Neurology 87(5), 539–547 (2016)

    Article  Google Scholar 

  17. Jagust, W.J., et al.: The Alzheimer’s disease neuroimaging initiative positron emission tomography core. Alzheimer’s Dement. 6(3), 221–229 (2010)

    Article  Google Scholar 

  18. Kim, H., Mnih, A.: Disentangling by factorising. In: ICML, pp. 2649–2658. PMLR (2018)

    Google Scholar 

  19. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. In: ICLR 2014 - arXiv:1312.6114 (2014)

  20. Kingma, D.P., Welling, M.: An Introduction to Variational Autoencoders. Now publishers Inc, Norwell (2019)

    Book  Google Scholar 

  21. Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow. In: Advances in NeurIPS, vol. 29 (2016)

    Google Scholar 

  22. Larsen, A.B.L., Sønderby, S.K., Larochelle, H., Winther, O.: Autoencoding beyond pixels using a learned similarity metric. In: ICML, pp. 1558–1566. PMLR (2016)

    Google Scholar 

  23. Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I., Frey, B.: Adversarial autoencoders (2015). arXiv:1511.05644

  24. Mostapha, M., et al.: Semi-supervised VAE-GAN for out-of-sample detection applied to MRI quality control. In: Shen, D., et al. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2019. Lecture Notes in Computer Science(), vol. 11766, pp. 127–136. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32248-9_15

    Chapter  Google Scholar 

  25. Rezende, D., Mohamed, S.: Variational inference with normalizing flows. In: ICML, pp. 1530–1538. PMLR (2015)

    Google Scholar 

  26. Routier, A., et al.: Clinica: an open-source software platform for reproducible clinical neuroscience studies. Front. Neuroinform. 15, 689675 (2021)

    Article  Google Scholar 

  27. Snell, J., Ridgeway, K., Liao, R., Roads, B.D., Mozer, M.C., Zemel, R.S.: Learning to generate images with perceptual similarity metrics. In: ICIP, pp. 4277–4281. IEEE (2017)

    Google Scholar 

  28. Thibeau-Sutre, E., et al.: ClinicaDL: an open-source deep learning software for reproducible neuroimaging processing. Comput. Meth. Prog. Bio. 220, 106818 (2022)

    Article  Google Scholar 

  29. Tolstikhin, I., Bousquet, O., Gelly, S., Schoelkopf, B.: Wasserstein auto-encoders. In: ICLR (2018)

    Google Scholar 

  30. Tomczak, J., Welling, M.: VAE with a VampPrior. In: International Conference on Artificial Intelligence and Statistics, pp. 1214–1223. PMLR (2018)

    Google Scholar 

  31. Uzunova, H., Schultz, S., Handels, H., Ehrhardt, J.: Unsupervised pathology detection in medical images using conditional variational autoencoders. IJCARS 14, 451–461 (2019)

    Google Scholar 

  32. Van Den Oord, A., et al.: Neural discrete representation learning. In: Advances in NeurIPS, vol. 30 (2017)

    Google Scholar 

  33. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  34. Wen, J., et al.: Convolutional neural networks for classification of Alzheimer’s disease: overview and reproducible evaluation. Media 63, 101694 (2020)

    Google Scholar 

  35. Xia, T., Chartsias, A., Tsaftaris, S.A.: Pseudo-healthy synthesis with pathology disentanglement and adversarial learning. Media 64, 101719 (2020)

    Google Scholar 

  36. Zhao, S., Song, J., Ermon, S.: InfoVAE: balancing learning and inference in variational autoencoders. In: Proceedings AAAI Conference on Artificial Intelligence, vol. 33, pp. 5885–5892 (2019)

    Google Scholar 

Download references

Acknowledgment

The research leading to these results has received funding from the French government under management of Agence Nationale de la Recherche as part of the “Investissements d’avenir” program, reference ANR-19-P3IA-0001 (PRAIRIE 3IA Institute) and reference ANR-10-IAIHU-06 (Agence Nationale de la Recherche-10-IA Institut Hospitalo-Universitaire-6). This work was granted access to the HPC resources of IDRIS under the allocation AD011011648 made by GENCI.

Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi Hassanaly .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 5282 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hassanaly, R., Brianceau, C., Colliot, O., Burgos, N. (2024). Unsupervised Anomaly Detection in 3D Brain FDG PET: A Benchmark of 17 VAE-Based Approaches. In: Mukhopadhyay, A., Oksuz, I., Engelhardt, S., Zhu, D., Yuan, Y. (eds) Deep Generative Models. MICCAI 2023. Lecture Notes in Computer Science, vol 14533. Springer, Cham. https://doi.org/10.1007/978-3-031-53767-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53767-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53766-0

  • Online ISBN: 978-3-031-53767-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics