Abstract
The use of deep generative models for unsupervised anomaly detection is an area of research that has gained interest in recent years in the field of medical imaging. Among all the existing models, the variational autoencoder (VAE) has proven to be efficient while remaining simple to use. Much research to improve the original method has been achieved in the computer vision literature, but rarely translated to medical imaging applications. To fill this gap, we propose a benchmark of fifteen variants of VAE that we compare with a vanilla autoencoder and VAE for a neuroimaging use case relying on a simulation-based evaluation framework. The use case is the detection of anomalies related to Alzheimer’s disease and other dementias in 3D FDG PET.
We show that among the fifteen VAE variants tested, nine lead to a good reconstruction accuracy and are able to generate healthy-looking images. This indicates that many approaches developed for computer vision applications can generalize to the unsupervised detection of anomalies of various shapes, intensities and locations in 3D FDG PET. However, these models do not outperform the vanilla autoencoder and VAE.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Baur, C., Denner, S., Wiestler, B., Navab, N., Albarqouni, S.: Autoencoders for unsupervised anomaly segmentation in brain MR images: a comparative study. Media 69, 101952 (2021)
Burda, Y., Grosse, R.B., Salakhutdinov, R.: Importance weighted autoencoders. In: ICLR (2016)
Burgos, N., et al.: Anomaly detection for the individual analysis of brain PET images. J. Med. Imag. 8(2), 024003 (2021)
Chadebec, C., Vincent, L.J., Allassonniere, S.: Pythae: unifying generative autoencoders in Python - a benchmarking use case. In: Thirty-sixth Conference on NeurIPS Datasets and Benchmarks Track (2022)
Chen, R.T., Li, X., Grosse, R.B., Duvenaud, D.K.: Isolating sources of disentanglement in variational autoencoders. In: Advances in NeurIPS, vol. 31 (2018)
Chen, X., Konukoglu, E.: Unsupervised detection of lesions in brain MRI using constrained adversarial auto-encoders. In: MIDL (2018)
Chen, X., Konukoglu, E.: Unsupervised abnormality detection in medical images with deep generative methods, pp. 303–324. Elsevier (2022)
Chételat, G., et al.: Amyloid-PET and 18F-FDG-PET in the diagnostic investigation of Alzheimer’s disease and other dementias. Lancet Neurol. 19(11), 951–962 (2020)
Choi, H., Ha, S., Kang, H., Lee, H., Lee, D.S.: Deep learning only by normal brain PET identify unheralded brain anomalies. EBioMedicine 43, 447–453 (2019)
Fernando, T., Gammulle, H., Denman, S., Sridharan, S., Fookes, C.: Deep learning for medical anomaly detection - a survey. ACM Comput. Surv. 54(7), 1–37 (2021)
Ghosh, P., Sajjadi, M.S., Vergari, A., Black, M., Schölkopf, B.: From variational to deterministic autoencoders (2019). arXiv:1903.12436
Goodfellow, I., et al.: Generative adversarial nets. In: Advances in NeurIPS, vol. 27 (2014)
Hassanaly, R., Bottani, S., Sauty, B., Colliot, O., Burgos, N.: Simulation-based evaluation framework for deep learning unsupervised anomaly detection on brain FDG PET. In: SPIE Medical Imaging (2023)
Higgins, I., et al.: beta-VAE: learning basic visual concepts with a constrained variational framework. In: ICLR (2017)
Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. In: Advances in NeurIPS, vol. 33, pp. 6840–6851 (2020)
Jack, C.R., et al.: A/T/N: an unbiased descriptive classification scheme for Alzheimer disease biomarkers. Neurology 87(5), 539–547 (2016)
Jagust, W.J., et al.: The Alzheimer’s disease neuroimaging initiative positron emission tomography core. Alzheimer’s Dement. 6(3), 221–229 (2010)
Kim, H., Mnih, A.: Disentangling by factorising. In: ICML, pp. 2649–2658. PMLR (2018)
Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. In: ICLR 2014 - arXiv:1312.6114 (2014)
Kingma, D.P., Welling, M.: An Introduction to Variational Autoencoders. Now publishers Inc, Norwell (2019)
Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow. In: Advances in NeurIPS, vol. 29 (2016)
Larsen, A.B.L., Sønderby, S.K., Larochelle, H., Winther, O.: Autoencoding beyond pixels using a learned similarity metric. In: ICML, pp. 1558–1566. PMLR (2016)
Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I., Frey, B.: Adversarial autoencoders (2015). arXiv:1511.05644
Mostapha, M., et al.: Semi-supervised VAE-GAN for out-of-sample detection applied to MRI quality control. In: Shen, D., et al. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2019. Lecture Notes in Computer Science(), vol. 11766, pp. 127–136. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32248-9_15
Rezende, D., Mohamed, S.: Variational inference with normalizing flows. In: ICML, pp. 1530–1538. PMLR (2015)
Routier, A., et al.: Clinica: an open-source software platform for reproducible clinical neuroscience studies. Front. Neuroinform. 15, 689675 (2021)
Snell, J., Ridgeway, K., Liao, R., Roads, B.D., Mozer, M.C., Zemel, R.S.: Learning to generate images with perceptual similarity metrics. In: ICIP, pp. 4277–4281. IEEE (2017)
Thibeau-Sutre, E., et al.: ClinicaDL: an open-source deep learning software for reproducible neuroimaging processing. Comput. Meth. Prog. Bio. 220, 106818 (2022)
Tolstikhin, I., Bousquet, O., Gelly, S., Schoelkopf, B.: Wasserstein auto-encoders. In: ICLR (2018)
Tomczak, J., Welling, M.: VAE with a VampPrior. In: International Conference on Artificial Intelligence and Statistics, pp. 1214–1223. PMLR (2018)
Uzunova, H., Schultz, S., Handels, H., Ehrhardt, J.: Unsupervised pathology detection in medical images using conditional variational autoencoders. IJCARS 14, 451–461 (2019)
Van Den Oord, A., et al.: Neural discrete representation learning. In: Advances in NeurIPS, vol. 30 (2017)
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)
Wen, J., et al.: Convolutional neural networks for classification of Alzheimer’s disease: overview and reproducible evaluation. Media 63, 101694 (2020)
Xia, T., Chartsias, A., Tsaftaris, S.A.: Pseudo-healthy synthesis with pathology disentanglement and adversarial learning. Media 64, 101719 (2020)
Zhao, S., Song, J., Ermon, S.: InfoVAE: balancing learning and inference in variational autoencoders. In: Proceedings AAAI Conference on Artificial Intelligence, vol. 33, pp. 5885–5892 (2019)
Acknowledgment
The research leading to these results has received funding from the French government under management of Agence Nationale de la Recherche as part of the “Investissements d’avenir” program, reference ANR-19-P3IA-0001 (PRAIRIE 3IA Institute) and reference ANR-10-IAIHU-06 (Agence Nationale de la Recherche-10-IA Institut Hospitalo-Universitaire-6). This work was granted access to the HPC resources of IDRIS under the allocation AD011011648 made by GENCI.
Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Hassanaly, R., Brianceau, C., Colliot, O., Burgos, N. (2024). Unsupervised Anomaly Detection in 3D Brain FDG PET: A Benchmark of 17 VAE-Based Approaches. In: Mukhopadhyay, A., Oksuz, I., Engelhardt, S., Zhu, D., Yuan, Y. (eds) Deep Generative Models. MICCAI 2023. Lecture Notes in Computer Science, vol 14533. Springer, Cham. https://doi.org/10.1007/978-3-031-53767-7_11
Download citation
DOI: https://doi.org/10.1007/978-3-031-53767-7_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-53766-0
Online ISBN: 978-3-031-53767-7
eBook Packages: Computer ScienceComputer Science (R0)