Skip to main content

ICoNIK: Generating Respiratory-Resolved Abdominal MR Reconstructions Using Neural Implicit Representations in k-Space

  • Conference paper
  • First Online:
Deep Generative Models (MICCAI 2023)

Abstract

Motion-resolved reconstruction for abdominal magnetic resonance imaging (MRI) remains a challenge due to the trade-off between residual motion blurring caused by discretized motion states and undersampling artefacts. In this work, we generate blurring-free motion-resolved abdominal reconstructions by learning a neural implicit representation directly in k-space (NIK). Using measured sampling points and a data-derived respiratory navigator signal, we train a network to generate continuous signal values. To aid the regularization of sparsely sampled regions, we introduce an additional informed correction layer (ICo), which leverages information from neighboring regions to correct NIK’s prediction. The proposed generative reconstruction methods, NIK and ICoNIK, outperform standard motion-resolved reconstruction techniques and provide a promising solution to address motion artefacts in abdominal MRI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Feng, J., Feng, R., Wu, Q., Zhang, Z., Zhang, Y., Wei, H.: Spatiotemporal implicit neural representation for unsupervised dynamic MRI reconstruction (2022). arXiv: 2301.00127v2

  2. Feng, L., Axel, L., Chandarana, H., Block, K.T., Sodickson, D.K., Otazo, R.: XD-GRASP: golden-angle radial MRI with reconstruction of extra motion-state dimensions using compressed sensing. Magn. Reson. Med. 75(2), 775–788 (2016)

    Article  Google Scholar 

  3. Fessler, J.A.: On NUFFT-based gridding for non-Cartesian MRI. J. Magn. Reson. 188(2), 191–195 (2007)

    Article  Google Scholar 

  4. Griswold, M.A., et al.: Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn. Reson. Med. 47(6), 1202–1210 (2002)

    Article  Google Scholar 

  5. Hammernik, K., et al.: Learning a variational network for reconstruction of accelerated MRI data. Magn. Reson. Med. 79(6), 3055–3071 (2018)

    Article  Google Scholar 

  6. Huang, W., Li, H.B., Pan, J., Cruz, G., Rueckert, D., Hammernik, K.: Neural implicit k-space for binning-free non-cartesian cardiac MR imaging. In: Frangi, A., de Bruijne, M., Wassermann, D., Navab, N. (eds.) IPMI 2023. LNCS, vol. 13939, pp. 548–560. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-34048-2_42

    Chapter  Google Scholar 

  7. Hyun, C.M., Kim, H.P., Lee, S.M., Lee, S., Seo, J.K.: Deep learning for undersampled MRI reconstruction. Phys. Med. Biol. 63(13), 135007 (2018)

    Article  Google Scholar 

  8. Jafari, R., et al.: GRASPnet: fast spatiotemporal deep learning reconstruction of golden-angle radial data for free-breathing dynamic contrast-enhanced MRI. NMR Biomed. e4861 (2022)

    Google Scholar 

  9. Küstner, T., et al.: CINENet: deep learning-based 3D cardiac CINE MRI reconstruction with multi-coil complex-valued 4D spatio-temporal convolutions. Sci. Rep. 10(1), 13710 (2020)

    Article  Google Scholar 

  10. McClelland, J.R., Hawkes, D.J., Schaeffter, T., King, A.P.: Respiratory motion models: a review. Med. Image Anal. 17(1), 19–42 (2013)

    Article  Google Scholar 

  11. Seiberlich, N., Ehses, P., Duerk, J., Gilkeson, R., Griswold, M.: Improved radial GRAPPA calibration for real-time free-breathing cardiac imaging. Magn. Reson. Med. 65(2), 492–505 (2011)

    Article  Google Scholar 

  12. Spieker, V., et al.: Deep learning for retrospective motion correction in MRI: a comprehensive review. IEEE Trans. Med. Imaging 43(2), 846–859 (2024). https://doi.org/10.1109/TMI.2023.3323215

    Article  MathSciNet  Google Scholar 

  13. Terpstra, M., Maspero, M., Verhoeff, J., van den Berg, C.: Accelerated respiratory-resolved 4D-MRI with separable spatio-temporal neural networks, arXiv: 2211.05678v1 (2023)

  14. Uecker, M., et al.: ESPIRiT-an eigenvalue approach to autocalibrating parallel MRI: where SENSE meets GRAPPA. Magn. Reson. Med. 71(3), 990–1001 (2014)

    Article  Google Scholar 

  15. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  16. Yoo, J., Jin, K.H., Gupta, H., Yerly, J., Stuber, M., Unser, M.: Time-dependent deep image prior for dynamic MRI. IEEE Trans. Med. Imaging 40(12), 3337–3348 (2021)

    Article  Google Scholar 

  17. Zaitsev, M., Maclaren, J., Herbst, M.: Motion artifacts in MRI: a complex problem with many partial solutions. J. Magn. Reson. Imaging 42(4), 887–901 (2015)

    Article  Google Scholar 

  18. Zou, Q., Torres, L.A., Fain, S.B., Higano, N.S., Bates, A.J., Jacob, M.: Dynamic imaging using motion-compensated smoothness regularization on manifolds (MoCo-SToRM). Phys. Med. Biol. 67(14) (2022)

    Google Scholar 

Download references

Acknowledgements

V.S. and H.E. are partially supported by the Helmholtz Association under the joint research school “Munich School for Data Science - MUDS”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veronika Spieker .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 1804 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Spieker, V. et al. (2024). ICoNIK: Generating Respiratory-Resolved Abdominal MR Reconstructions Using Neural Implicit Representations in k-Space. In: Mukhopadhyay, A., Oksuz, I., Engelhardt, S., Zhu, D., Yuan, Y. (eds) Deep Generative Models. MICCAI 2023. Lecture Notes in Computer Science, vol 14533. Springer, Cham. https://doi.org/10.1007/978-3-031-53767-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53767-7_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53766-0

  • Online ISBN: 978-3-031-53767-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics