Skip to main content

Ultrasound Image Reconstruction with Denoising Diffusion Restoration Models

  • Conference paper
  • First Online:
Deep Generative Models (MICCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14533))

  • 1062 Accesses

Abstract

Ultrasound image reconstruction can be approximately cast as a linear inverse problem that has traditionally been solved with penalized optimization using the \(l_1\) or \(l_2\) norm, or wavelet-based terms. However, such regularization functions often struggle to balance the sparsity and the smoothness. A promising alternative is using learned priors to make the prior knowledge closer to reality. In this paper, we rely on learned priors under the framework of Denoising Diffusion Restoration Models (DDRM), initially conceived for restoration tasks with natural images. We propose and test two adaptions of DDRM to ultrasound inverse problem models, DRUS and WDRUS. Our experiments on synthetic and PICMUS data show that from a single plane wave our method can achieve image quality comparable to or better than DAS and state-of-the-art methods. The code is available at https://github.com/Yuxin-Zhang-Jasmine/DRUS-v1/.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We use subscript d to refer to the original equations of the DDRM model.

References

  1. Ali, R., Herickhoff, C.D., Hyun, D., Dahl, J.J., Bottenus, N.: Extending retrospective encoding for robust recovery of the multistatic data set. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 67(5), 943–956 (2020)

    Article  Google Scholar 

  2. Asl, B.M., Mahloojifar, A.: Eigenspace-based minimum variance beamforming applied to medical ultrasound imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(11), 2381–2390 (2010)

    Article  Google Scholar 

  3. Camacho, J., Parrilla, M., Fritsch, C.: Phase coherence imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(5), 958–974 (2009)

    Article  Google Scholar 

  4. Chennakeshava, N., Luijten, B., Drori, O., Mischi, M., Eldar, Y.C., van Sloun, R.J.G.: High resolution plane wave compounding through deep proximal learning. In: IEEE IUS, pp. 1–4 (2020)

    Google Scholar 

  5. Chernyakova, T., Cohen, D., Shoham, M., Eldar, Y.C.: iMAP beamforming for high-quality high frame rate imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 66(12), 1830–1844 (2019)

    Article  Google Scholar 

  6. Chernyakova, T., et al.: Fourier-domain beamforming and structure-based reconstruction for plane-wave imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(10), 1810–1821 (2018)

    Article  Google Scholar 

  7. Dhariwal, P., Nichol, A.: Diffusion models beat GANs on image synthesis. Technical report, arXiv:2105.05233 (2021)

  8. Goudarzi, S., Asif, A., Rivaz, H.: Ultrasound beamforming using MobileNetV2. In: IEEE IUS, pp. 1–4 (2020)

    Google Scholar 

  9. Goudarzi, S., Basarab, A., Rivaz, H.: Inverse problem of ultrasound beamforming with denoising-based regularized solutions. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 69(10), 2906–2916 (2022)

    Article  Google Scholar 

  10. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. Technical report, arXiv:2006.11239 (2020)

  11. Hyun, D., Brickson, L.L., Looby, K.T., Dahl, J.J.: Beamforming and speckle reduction using neural networks. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 66(5), 898–910 (2019)

    Article  Google Scholar 

  12. Jensen, J., Svendsen, N.: Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39(2), 262–267 (1992)

    Article  Google Scholar 

  13. Jensen, J.: Field: a program for simulating ultrasound systems. Med. Biol. Eng. Comput. 34(Suppl. 1), 351–353 (1997)

    Google Scholar 

  14. Kawar, B., Elad, M., Ermon, S., Song, J.: Denoising diffusion restoration models. Technical report, arXiv:2201.11793 (2022)

  15. Khan, C., Dei, K., Schlunk, S., Ozgun, K., Byram, B.: A real-time, GPU-based implementation of aperture domain model image reconstruction. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 68(6), 2101–2116 (2021)

    Article  Google Scholar 

  16. Laroche, N., Bourguignon, S., Idier, J., Carcreff, E., Duclos, A.: Fast non-stationary deconvolution of ultrasonic beamformed images for nondestructive testing. IEEE Trans. Comput. Imaging 7, 935–947 (2021)

    Article  MathSciNet  Google Scholar 

  17. Liebgott, H., Rodriguez-Molares, A., Cervenansky, F., Jensen, J., Bernard, O.: Plane-wave imaging challenge in medical ultrasound. In: IEEE IUS, pp. 1–4 (2016)

    Google Scholar 

  18. Luijten, B., et al.: Adaptive ultrasound beamforming using deep learning. IEEE Trans. Med. Imaging 39(12), 3967–3978 (2020)

    Article  Google Scholar 

  19. Nichol, A., Dhariwal, P.: Improved denoising diffusion probabilistic models. Technical report, arXiv:2102.09672 (2021)

  20. Ozkan, E., Vishnevsky, V., Goksel, O.: Inverse problem of ultrasound beamforming with sparsity constraints and regularization. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(3), 356–365 (2018)

    Article  Google Scholar 

  21. Perdios, D., Vonlanthen, M., Martinez, F., Arditi, M., Thiran, J.P.: NN-based image reconstruction method for ultrafast ultrasound imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 69(4), 1154–1168 (2022)

    Article  Google Scholar 

  22. Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  23. van Sloun, R.J.G., Cohen, R., Eldar, Y.C.: Deep learning in ultrasound imaging. Proc. IEEE 108(1), 11–29 (2020)

    Article  Google Scholar 

  24. Song, J., Meng, C., Ermon, S.: Denoising diffusion implicit models. arXiv:2010.02502 (2020)

  25. Song, Y., Shen, L., Xing, L., Ermon, S.: Solving inverse problems in medical imaging with score-based generative models. Technical report, arXiv:2111.08005 (2022)

  26. Synnevag, J.F., Austeng, A., Holm, S.: Adaptive beamforming applied to medical ultrasound imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(8), 1606–1613 (2007)

    Article  Google Scholar 

  27. Tang, J., Zou, B., Li, C., Feng, S., Peng, H.: Plane-wave image reconstruction via generative adversarial network and attention mechanism. IEEE Trans. Instrum. Meas. 70, 1–15 (2021)

    Google Scholar 

  28. Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  29. Youn, J., Luijten, B., Bo Stuart, M., Eldar, Y.C., van Sloun, R.J.G., Arendt Jensen, J.: Deep learning models for fast ultrasound localization microscopy. In: IEEE IUS, pp. 1–4 (2020)

    Google Scholar 

  30. Zhang, J., He, Q., Xiao, Y., Zheng, H., Wang, C., Luo, J.: Ultrasound image reconstruction from plane wave radio-frequency data by self-supervised deep neural network. Med. Image Anal. 70, 102018 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuxin Zhang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1758 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Y., Huneau, C., Idier, J., Mateus, D. (2024). Ultrasound Image Reconstruction with Denoising Diffusion Restoration Models. In: Mukhopadhyay, A., Oksuz, I., Engelhardt, S., Zhu, D., Yuan, Y. (eds) Deep Generative Models. MICCAI 2023. Lecture Notes in Computer Science, vol 14533. Springer, Cham. https://doi.org/10.1007/978-3-031-53767-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53767-7_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53766-0

  • Online ISBN: 978-3-031-53767-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics