Abstract
Ultrasound image reconstruction can be approximately cast as a linear inverse problem that has traditionally been solved with penalized optimization using the \(l_1\) or \(l_2\) norm, or wavelet-based terms. However, such regularization functions often struggle to balance the sparsity and the smoothness. A promising alternative is using learned priors to make the prior knowledge closer to reality. In this paper, we rely on learned priors under the framework of Denoising Diffusion Restoration Models (DDRM), initially conceived for restoration tasks with natural images. We propose and test two adaptions of DDRM to ultrasound inverse problem models, DRUS and WDRUS. Our experiments on synthetic and PICMUS data show that from a single plane wave our method can achieve image quality comparable to or better than DAS and state-of-the-art methods. The code is available at https://github.com/Yuxin-Zhang-Jasmine/DRUS-v1/.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
We use subscript d to refer to the original equations of the DDRM model.
References
Ali, R., Herickhoff, C.D., Hyun, D., Dahl, J.J., Bottenus, N.: Extending retrospective encoding for robust recovery of the multistatic data set. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 67(5), 943–956 (2020)
Asl, B.M., Mahloojifar, A.: Eigenspace-based minimum variance beamforming applied to medical ultrasound imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(11), 2381–2390 (2010)
Camacho, J., Parrilla, M., Fritsch, C.: Phase coherence imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(5), 958–974 (2009)
Chennakeshava, N., Luijten, B., Drori, O., Mischi, M., Eldar, Y.C., van Sloun, R.J.G.: High resolution plane wave compounding through deep proximal learning. In: IEEE IUS, pp. 1–4 (2020)
Chernyakova, T., Cohen, D., Shoham, M., Eldar, Y.C.: iMAP beamforming for high-quality high frame rate imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 66(12), 1830–1844 (2019)
Chernyakova, T., et al.: Fourier-domain beamforming and structure-based reconstruction for plane-wave imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(10), 1810–1821 (2018)
Dhariwal, P., Nichol, A.: Diffusion models beat GANs on image synthesis. Technical report, arXiv:2105.05233 (2021)
Goudarzi, S., Asif, A., Rivaz, H.: Ultrasound beamforming using MobileNetV2. In: IEEE IUS, pp. 1–4 (2020)
Goudarzi, S., Basarab, A., Rivaz, H.: Inverse problem of ultrasound beamforming with denoising-based regularized solutions. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 69(10), 2906–2916 (2022)
Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. Technical report, arXiv:2006.11239 (2020)
Hyun, D., Brickson, L.L., Looby, K.T., Dahl, J.J.: Beamforming and speckle reduction using neural networks. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 66(5), 898–910 (2019)
Jensen, J., Svendsen, N.: Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39(2), 262–267 (1992)
Jensen, J.: Field: a program for simulating ultrasound systems. Med. Biol. Eng. Comput. 34(Suppl. 1), 351–353 (1997)
Kawar, B., Elad, M., Ermon, S., Song, J.: Denoising diffusion restoration models. Technical report, arXiv:2201.11793 (2022)
Khan, C., Dei, K., Schlunk, S., Ozgun, K., Byram, B.: A real-time, GPU-based implementation of aperture domain model image reconstruction. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 68(6), 2101–2116 (2021)
Laroche, N., Bourguignon, S., Idier, J., Carcreff, E., Duclos, A.: Fast non-stationary deconvolution of ultrasonic beamformed images for nondestructive testing. IEEE Trans. Comput. Imaging 7, 935–947 (2021)
Liebgott, H., Rodriguez-Molares, A., Cervenansky, F., Jensen, J., Bernard, O.: Plane-wave imaging challenge in medical ultrasound. In: IEEE IUS, pp. 1–4 (2016)
Luijten, B., et al.: Adaptive ultrasound beamforming using deep learning. IEEE Trans. Med. Imaging 39(12), 3967–3978 (2020)
Nichol, A., Dhariwal, P.: Improved denoising diffusion probabilistic models. Technical report, arXiv:2102.09672 (2021)
Ozkan, E., Vishnevsky, V., Goksel, O.: Inverse problem of ultrasound beamforming with sparsity constraints and regularization. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(3), 356–365 (2018)
Perdios, D., Vonlanthen, M., Martinez, F., Arditi, M., Thiran, J.P.: NN-based image reconstruction method for ultrafast ultrasound imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 69(4), 1154–1168 (2022)
Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)
van Sloun, R.J.G., Cohen, R., Eldar, Y.C.: Deep learning in ultrasound imaging. Proc. IEEE 108(1), 11–29 (2020)
Song, J., Meng, C., Ermon, S.: Denoising diffusion implicit models. arXiv:2010.02502 (2020)
Song, Y., Shen, L., Xing, L., Ermon, S.: Solving inverse problems in medical imaging with score-based generative models. Technical report, arXiv:2111.08005 (2022)
Synnevag, J.F., Austeng, A., Holm, S.: Adaptive beamforming applied to medical ultrasound imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(8), 1606–1613 (2007)
Tang, J., Zou, B., Li, C., Feng, S., Peng, H.: Plane-wave image reconstruction via generative adversarial network and attention mechanism. IEEE Trans. Instrum. Meas. 70, 1–15 (2021)
Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)
Youn, J., Luijten, B., Bo Stuart, M., Eldar, Y.C., van Sloun, R.J.G., Arendt Jensen, J.: Deep learning models for fast ultrasound localization microscopy. In: IEEE IUS, pp. 1–4 (2020)
Zhang, J., He, Q., Xiao, Y., Zheng, H., Wang, C., Luo, J.: Ultrasound image reconstruction from plane wave radio-frequency data by self-supervised deep neural network. Med. Image Anal. 70, 102018 (2021)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Zhang, Y., Huneau, C., Idier, J., Mateus, D. (2024). Ultrasound Image Reconstruction with Denoising Diffusion Restoration Models. In: Mukhopadhyay, A., Oksuz, I., Engelhardt, S., Zhu, D., Yuan, Y. (eds) Deep Generative Models. MICCAI 2023. Lecture Notes in Computer Science, vol 14533. Springer, Cham. https://doi.org/10.1007/978-3-031-53767-7_19
Download citation
DOI: https://doi.org/10.1007/978-3-031-53767-7_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-53766-0
Online ISBN: 978-3-031-53767-7
eBook Packages: Computer ScienceComputer Science (R0)