Skip to main content

Federated Multimodal and Multiresolution Graph Integration for Connectional Brain Template Learning

  • Conference paper
  • First Online:
Deep Generative Models (MICCAI 2023)

Abstract

The connectional brain template (CBT) is an integrated graph that normalizes brain connectomes across individuals in a given population. A well-centered and representative CBT can offer a holistic understanding of the brain roadmap landscape. Catchy but rigorous graph neural network (GNN) architectures were tailored for CBT integration, however, ensuring the privacy in CBT learning from large-scale connectomic populations poses a significant challenge. Although prior work explored the use of federated learning in CBT integration, it fails to handle brain graphs at multiple resolutions. To address this, we propose a novel federated multi-modal multi-resolution graph integration framework (Fed2M), where each hospital is trained on a graph dataset from modality m and at resolution \(r_m\) to generate a local CBT. By leveraging federated aggregation in a shared layer-wise manner across different hospital-specific GNNs, we can debias the CBT learning process towards its local dataset and force the CBT to move towards a global center derived from multiple private graph datasets without compromising privacy. Remarkably, the hospital-specific CBTs generated by Fed2M converge towards a shared global CBT, generated by aggregating learned mappings across heterogeneous federated integration GNNs (i.e., each hospital has access to a specific unimodal graph data at a specific resolution). To ensure the global centeredness of each hospital-specific CBT, we introduce a novel loss function that enables global centeredness across hospitals and enforces consistency among the generated CBTs. Our code is available at https://github.com/basiralab/Fed2M.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/basiralab/Fed2M.

References

  1. Sporns, O., Tononi, G., Kötter, R.: The human connectome: a structural description of the human brain. PLoS Comput. Biol. 1, e42 (2005)

    Article  Google Scholar 

  2. Bassett, D., Sporns, O.: Network neuroscience. Nat. Neurosci. 20, 353–364 (2017)

    Article  Google Scholar 

  3. Rekik, I., Li, G., Lin, W., Shen, D.: Estimation of brain network atlases using diffusive-shrinking graphs: application to developing brains. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 385–397. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_31

    Chapter  Google Scholar 

  4. Chaari, N., Akdağ, H., Rekik, I.: Comparative survey of multigraph integration methods for holistic brain connectivity mapping. Med. Image Anal. 85, 102741 (2023)

    Article  Google Scholar 

  5. Wassermann, D., Mazauric, D., Gallardo-Diez, G., Deriche, R.: Extracting the core structural connectivity network: guaranteeing network connectedness through a graph-theoretical approach. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016, Part I. LNCS, vol. 9900, pp. 89–96. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46720-7_11

    Chapter  Google Scholar 

  6. Uylings, H., Rajkowska, G., Sanz-Arigita, E., Amunts, K., Zilles, K.: Consequences of large interindividual variability for human brain atlases: converging macroscopical imaging and microscopical neuroanatomy. Anat. Embryol. 210, 423–31 (2006)

    Article  Google Scholar 

  7. Heuvel, M., Sporns, O.: A cross-disorder connectome landscape of brain dysconnectivity. Nat. Rev. Neurosci. 20, 1 (2019)

    Google Scholar 

  8. Gurbuz, M.B., Rekik, I.: Deep graph normalizer: a geometric deep learning approach for estimating connectional brain templates. In: Martel, A.L., et al. (eds.) MICCAI 2020, Part VII. LNCS, vol. 12267, pp. 155–165. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59728-3_16

    Chapter  Google Scholar 

  9. Van Essen, D., Glasser, M.: The human connectome project: progress and prospects. In: Cerebrum: the Dana Forum on Brain Science, vol. 2016 (2016)

    Google Scholar 

  10. Verma, J., Gupta, S., Mukherjee, D., Chakraborty, T.: Heterogeneous edge embedding for friend recommendation. In: Azzopardi, L., Stein, B., Fuhr, N., Mayr, P., Hauff, C., Hiemstra, D. (eds.) ECIR 2019, Part II. LNCS, vol. 11438, pp. 172–179. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-15719-7_22

    Chapter  Google Scholar 

  11. Acosta-Mendoza, N., Gago-Alonso, A., Carrasco-Ochoa, J., Martínez-Trinidad, J.F., Pagola, J.: Extension of canonical adjacency matrices for frequent approximate subgraph mining on multi-graph collections. Int. J. Pattern Recognit Artif Intell. 31, 1750025 (2017)

    Article  MathSciNet  Google Scholar 

  12. Bunke, H., Riesen, K.: Recent advances in graph-based pattern recognition with applications in document analysis. Pattern Recogn. 44, 1057–1067 (2011)

    Article  Google Scholar 

  13. Cinar, E., Haseki, S.E., Bessadok, A., Rekik, I.: Deep cross-modality and resolution graph integration for universal brain connectivity mapping and augmentation. In: Manfredi, L., et al. (eds.) ISGIE GRAIL 2022. LNCS, vol. 13754, pp. 89–98. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-21083-9_9

    Chapter  Google Scholar 

  14. Jin, H., Luo, Y., Li, P., Mathew, J.: A review of secure and privacy-preserving medical data sharing. IEEE Access 7, 61656–61669 (2019)

    Article  Google Scholar 

  15. Malin, B., Emam, K., O’Keefe, C.: Biomedical data privacy: problems, perspectives, and recent advances. J. Am. Med. Inform. Assoc. JAMIA 20, 2–6 (2012)

    Article  Google Scholar 

  16. Wang, B., et al.: Similarity network fusion for aggregating data types on a genomic scale. Nat. Methods 11, 333–337 (2014)

    Article  Google Scholar 

  17. Mhiri, I., Rekik, I.: Joint functional brain network atlas estimation and feature selection for neurological disorder diagnosis with application to autism. Med. Image Anal. 60, 101596 (2019)

    Article  Google Scholar 

  18. Mhiri, I., Mahjoub, M.A., Rekik, I.: Supervised multi-topology network cross-diffusion for population-driven brain network atlas estimation. In: Martel, A.L., et al. (eds.) MICCAI 2020, Part VII. LNCS, vol. 12267, pp. 166–176. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59728-3_17

    Chapter  Google Scholar 

  19. Gürbüz, M., Rekik, I.: MGN-Net: a multi-view graph normalizer for integrating heterogeneous biological network populations. Med. Image Anal. 71, 102059 (2021)

    Article  Google Scholar 

  20. Xu, J., Glicksberg, B.S., Su, C., Walker, P., Bian, J., Wang, F.: Federated learning for healthcare informatics. J. Healthc. Inform. Res. 5, 1–19 (2021)

    Article  Google Scholar 

  21. Rieke, N., et al.: The future of digital health with federated learning. NPJ Digit. Med. 3, 119 (2020)

    Article  Google Scholar 

  22. Bayram, H.C., Rekik, I.: A federated multigraph integration approach for connectional brain template learning. In: Syeda-Mahmood, T., et al. (eds.) ML-CDS 2021. LNCS, vol. 13050, pp. 36–47. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-89847-2_4

    Chapter  Google Scholar 

  23. McMahan, B., Moore, E., Ramage, D., Hampson, S., Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Artificial Intelligence and Statistics, PMLR, pp. 1273–1282 (2017)

    Google Scholar 

  24. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  25. Barrat, A., Barthelemy, M., Pastor-Satorras, R., Vespignani, A.: The architecture of complex weighted networks. Proc. Natl. Acad. Sci. U.S.A. 101, 3747–52 (2004)

    Article  Google Scholar 

  26. Wei, L., et al.: Longitudinal test-retest neuroimaging data from healthy young adults in Southwest China. Sci. Data 4, 170017 (2017)

    Article  Google Scholar 

  27. Hanzely, F., Richtárik, P.: Federated learning of a mixture of global and local models. arXiv preprint arXiv:2002.05516 (2020)

  28. Ji, S., Pan, S., Cambria, E., Marttinen, P., Yu, P.: A survey on knowledge graphs: representation, acquisition, and applications. IEEE Trans. Neural Netw. Learn. Syst. 33, 494–514 (2021)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Islem Rekik .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 239 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ji, J., Rekik, I. (2024). Federated Multimodal and Multiresolution Graph Integration for Connectional Brain Template Learning. In: Mukhopadhyay, A., Oksuz, I., Engelhardt, S., Zhu, D., Yuan, Y. (eds) Deep Generative Models. MICCAI 2023. Lecture Notes in Computer Science, vol 14533. Springer, Cham. https://doi.org/10.1007/978-3-031-53767-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53767-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53766-0

  • Online ISBN: 978-3-031-53767-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics