Abstract
The connectional brain template (CBT) is an integrated graph that normalizes brain connectomes across individuals in a given population. A well-centered and representative CBT can offer a holistic understanding of the brain roadmap landscape. Catchy but rigorous graph neural network (GNN) architectures were tailored for CBT integration, however, ensuring the privacy in CBT learning from large-scale connectomic populations poses a significant challenge. Although prior work explored the use of federated learning in CBT integration, it fails to handle brain graphs at multiple resolutions. To address this, we propose a novel federated multi-modal multi-resolution graph integration framework (Fed2M), where each hospital is trained on a graph dataset from modality m and at resolution \(r_m\) to generate a local CBT. By leveraging federated aggregation in a shared layer-wise manner across different hospital-specific GNNs, we can debias the CBT learning process towards its local dataset and force the CBT to move towards a global center derived from multiple private graph datasets without compromising privacy. Remarkably, the hospital-specific CBTs generated by Fed2M converge towards a shared global CBT, generated by aggregating learned mappings across heterogeneous federated integration GNNs (i.e., each hospital has access to a specific unimodal graph data at a specific resolution). To ensure the global centeredness of each hospital-specific CBT, we introduce a novel loss function that enables global centeredness across hospitals and enforces consistency among the generated CBTs. Our code is available at https://github.com/basiralab/Fed2M.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Sporns, O., Tononi, G., Kötter, R.: The human connectome: a structural description of the human brain. PLoS Comput. Biol. 1, e42 (2005)
Bassett, D., Sporns, O.: Network neuroscience. Nat. Neurosci. 20, 353–364 (2017)
Rekik, I., Li, G., Lin, W., Shen, D.: Estimation of brain network atlases using diffusive-shrinking graphs: application to developing brains. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 385–397. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_31
Chaari, N., Akdağ, H., Rekik, I.: Comparative survey of multigraph integration methods for holistic brain connectivity mapping. Med. Image Anal. 85, 102741 (2023)
Wassermann, D., Mazauric, D., Gallardo-Diez, G., Deriche, R.: Extracting the core structural connectivity network: guaranteeing network connectedness through a graph-theoretical approach. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016, Part I. LNCS, vol. 9900, pp. 89–96. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46720-7_11
Uylings, H., Rajkowska, G., Sanz-Arigita, E., Amunts, K., Zilles, K.: Consequences of large interindividual variability for human brain atlases: converging macroscopical imaging and microscopical neuroanatomy. Anat. Embryol. 210, 423–31 (2006)
Heuvel, M., Sporns, O.: A cross-disorder connectome landscape of brain dysconnectivity. Nat. Rev. Neurosci. 20, 1 (2019)
Gurbuz, M.B., Rekik, I.: Deep graph normalizer: a geometric deep learning approach for estimating connectional brain templates. In: Martel, A.L., et al. (eds.) MICCAI 2020, Part VII. LNCS, vol. 12267, pp. 155–165. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59728-3_16
Van Essen, D., Glasser, M.: The human connectome project: progress and prospects. In: Cerebrum: the Dana Forum on Brain Science, vol. 2016 (2016)
Verma, J., Gupta, S., Mukherjee, D., Chakraborty, T.: Heterogeneous edge embedding for friend recommendation. In: Azzopardi, L., Stein, B., Fuhr, N., Mayr, P., Hauff, C., Hiemstra, D. (eds.) ECIR 2019, Part II. LNCS, vol. 11438, pp. 172–179. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-15719-7_22
Acosta-Mendoza, N., Gago-Alonso, A., Carrasco-Ochoa, J., Martínez-Trinidad, J.F., Pagola, J.: Extension of canonical adjacency matrices for frequent approximate subgraph mining on multi-graph collections. Int. J. Pattern Recognit Artif Intell. 31, 1750025 (2017)
Bunke, H., Riesen, K.: Recent advances in graph-based pattern recognition with applications in document analysis. Pattern Recogn. 44, 1057–1067 (2011)
Cinar, E., Haseki, S.E., Bessadok, A., Rekik, I.: Deep cross-modality and resolution graph integration for universal brain connectivity mapping and augmentation. In: Manfredi, L., et al. (eds.) ISGIE GRAIL 2022. LNCS, vol. 13754, pp. 89–98. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-21083-9_9
Jin, H., Luo, Y., Li, P., Mathew, J.: A review of secure and privacy-preserving medical data sharing. IEEE Access 7, 61656–61669 (2019)
Malin, B., Emam, K., O’Keefe, C.: Biomedical data privacy: problems, perspectives, and recent advances. J. Am. Med. Inform. Assoc. JAMIA 20, 2–6 (2012)
Wang, B., et al.: Similarity network fusion for aggregating data types on a genomic scale. Nat. Methods 11, 333–337 (2014)
Mhiri, I., Rekik, I.: Joint functional brain network atlas estimation and feature selection for neurological disorder diagnosis with application to autism. Med. Image Anal. 60, 101596 (2019)
Mhiri, I., Mahjoub, M.A., Rekik, I.: Supervised multi-topology network cross-diffusion for population-driven brain network atlas estimation. In: Martel, A.L., et al. (eds.) MICCAI 2020, Part VII. LNCS, vol. 12267, pp. 166–176. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59728-3_17
Gürbüz, M., Rekik, I.: MGN-Net: a multi-view graph normalizer for integrating heterogeneous biological network populations. Med. Image Anal. 71, 102059 (2021)
Xu, J., Glicksberg, B.S., Su, C., Walker, P., Bian, J., Wang, F.: Federated learning for healthcare informatics. J. Healthc. Inform. Res. 5, 1–19 (2021)
Rieke, N., et al.: The future of digital health with federated learning. NPJ Digit. Med. 3, 119 (2020)
Bayram, H.C., Rekik, I.: A federated multigraph integration approach for connectional brain template learning. In: Syeda-Mahmood, T., et al. (eds.) ML-CDS 2021. LNCS, vol. 13050, pp. 36–47. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-89847-2_4
McMahan, B., Moore, E., Ramage, D., Hampson, S., Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Artificial Intelligence and Statistics, PMLR, pp. 1273–1282 (2017)
Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)
Barrat, A., Barthelemy, M., Pastor-Satorras, R., Vespignani, A.: The architecture of complex weighted networks. Proc. Natl. Acad. Sci. U.S.A. 101, 3747–52 (2004)
Wei, L., et al.: Longitudinal test-retest neuroimaging data from healthy young adults in Southwest China. Sci. Data 4, 170017 (2017)
Hanzely, F., Richtárik, P.: Federated learning of a mixture of global and local models. arXiv preprint arXiv:2002.05516 (2020)
Ji, S., Pan, S., Cambria, E., Marttinen, P., Yu, P.: A survey on knowledge graphs: representation, acquisition, and applications. IEEE Trans. Neural Netw. Learn. Syst. 33, 494–514 (2021)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Ji, J., Rekik, I. (2024). Federated Multimodal and Multiresolution Graph Integration for Connectional Brain Template Learning. In: Mukhopadhyay, A., Oksuz, I., Engelhardt, S., Zhu, D., Yuan, Y. (eds) Deep Generative Models. MICCAI 2023. Lecture Notes in Computer Science, vol 14533. Springer, Cham. https://doi.org/10.1007/978-3-031-53767-7_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-53767-7_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-53766-0
Online ISBN: 978-3-031-53767-7
eBook Packages: Computer ScienceComputer Science (R0)