Skip to main content

Diffusion Model Based Knee Cartilage Segmentation in MRI

  • Conference paper
  • First Online:
Deep Generative Models (MICCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14533))

  • 167 Accesses

Abstract

MRI imaging is crucial for knee joint analysis in osteoarthritis (OA) diagnosis. The segmentation and thickness estimation of knee cartilage are vital steps for OA assessment. Most deep learning algorithms typically produce a single segmentation mask or rely on architectural modifications like Dropout to generate multiple outputs. We propose an alternative approach using Denoising Diffusion Models (DDMs) to yield multiple variants of segmentation outputs for knee cartilage segmentation and thus offer a mechanism to study predictive uncertainty in unseen test data. We further propose to integrate sparsity adaptive losses to supervise the diffusion process to handle intricate knee cartilage structures. We could empirically validate that DDM-based models predict more meaningful uncertainties when compared to Dropout based mechanisms. We have also quantitatively shown that DDM-based multiple segmentation generators are resilient to noise and can generalize to unseen data acquisition setups.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ambellan, F., Tack, A., Ehlke, M., Zachow, S.: Automated segmentation of knee bone and cartilage combining statistical shape knowledge and convolutional neural networks: data from the osteoarthritis initiative. Med. Image Anal. 52, 109–118 (2019)

    Article  Google Scholar 

  2. Braun, H.J., Gold, G.E.: Diagnosis of osteoarthritis: imaging. Bone 51(2), 278–288 (2012)

    Article  Google Scholar 

  3. Chen, J., et al.: TransUNet: transformers make strong encoders for medical image segmentation. arXiv preprint arXiv:2102.04306 (2021)

  4. Desai, A.D., et al.: SKM-TEA: a dataset for accelerated MRI reconstruction with dense image labels for quantitative clinical evaluation. arXiv preprint arXiv:2203.06823 (2022)

  5. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. In: Advances in neural information processing systems, vol. 33, pp. 6840–6851 (2020)

    Google Scholar 

  6. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    Article  Google Scholar 

  7. Kervadec, H., Bouchtiba, J., Desrosiers, C., Granger, E., Dolz, J., Ayed, I.B.: Boundary loss for highly unbalanced segmentation. In: International Conference on Medical Imaging with Deep Learning, pp. 285–296. PMLR (2019)

    Google Scholar 

  8. Liang, D., Liu, J., Wang, K., Luo, G., Wang, W., Li, S.: Position-prior clustering-based self-attention module for knee cartilage segmentation. In: Medical Image Computing and Computer Assisted Intervention-MICCAI 2022: 25th International Conference, Singapore, 18–22 September 2022, Proceedings, Part V, pp. 193–202. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16443-9_19

  9. Ma, J., et al.: How distance transform maps boost segmentation CNNs: an empirical study. In: Arbel, T., Ayed, I.B., de Bruijne, M., Descoteaux, M., Lombaert, H., Pal, C. (eds.) Medical Imaging with Deep Learning. Proceedings of Machine Learning Research, vol. 121, pp. 479–492. PMLR, 06–08 July 2020. http://proceedings.mlr.press/v121/ma20b.html

  10. Peng, W., Adeli, E., Zhao, Q., Pohl, K.M.: Generating realistic 3D brain MRIs using a conditional diffusion probabilistic model. arXiv preprint arXiv:2212.08034 (2022)

  11. Pinaya, W.H., et al.: Brain imaging generation with latent diffusion models. In: Mukhopadhyay, A., Oksuz, I., Engelhardt, S., Zhu, D., Yuan, Y. (eds.) MICCAI Workshop on Deep Generative Models, vol. 13609, pp. 117–126. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-18576-2_12

  12. Sahu, P., et al.: Reproducible workflow for visualization and analysis of osteoarthritis abnormality progression. In: Proceedings of the International Workshop on Quantitative Musculoskeletal Imaging (QMSKI) (2022)

    Google Scholar 

  13. Warfield, S.K., Zou, K.H., Wells, W.M.: Simultaneous truth and performance level estimation (staple): an algorithm for the validation of image segmentation. IEEE Trans. Med. Imaging 23(7), 903–921 (2004)

    Article  Google Scholar 

  14. Wolleb, J., Sandkühler, R., Bieder, F., Valmaggia, P., Cattin, P.C.: Diffusion models for implicit image segmentation ensembles. In: International Conference on Medical Imaging with Deep Learning, pp. 1336–1348. PMLR (2022)

    Google Scholar 

  15. Wu, J., Fang, H., Zhang, Y., Yang, Y., Xu, Y.: MedSegDiff: medical image segmentation with diffusion probabilistic model. arXiv preprint arXiv:2211.00611 (2022)

  16. Xing, Z., Wan, L., Fu, H., Yang, G., Zhu, L.: Diff-UNet: a diffusion embedded network for volumetric segmentation. arXiv preprint arXiv:2303.10326 (2023)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veerasravanthi Mudiyam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mudiyam, V., Das, A., Ram, K., Sivaprakasam, M. (2024). Diffusion Model Based Knee Cartilage Segmentation in MRI. In: Mukhopadhyay, A., Oksuz, I., Engelhardt, S., Zhu, D., Yuan, Y. (eds) Deep Generative Models. MICCAI 2023. Lecture Notes in Computer Science, vol 14533. Springer, Cham. https://doi.org/10.1007/978-3-031-53767-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53767-7_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53766-0

  • Online ISBN: 978-3-031-53767-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics