Skip to main content

Investigating Data Memorization in 3D Latent Diffusion Models for Medical Image Synthesis

  • Conference paper
  • First Online:
Deep Generative Models (MICCAI 2023)

Abstract

Generative latent diffusion models have been established as state-of-the-art in data generation. One promising application is generation of realistic synthetic medical imaging data for open data sharing without compromising patient privacy. Despite the promise, the capacity of such models to memorize sensitive patient training data and synthesize samples showing high resemblance to training data samples is relatively unexplored. Here, we assess the memorization capacity of 3D latent diffusion models on photon-counting coronary computed tomography angiography and knee magnetic resonance imaging datasets. To detect potential memorization of training samples, we utilize self-supervised models based on contrastive learning. Our results suggest that such latent diffusion models indeed memorize training data, and there is a dire need for devising strategies to mitigate memorization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akbar, M.U., Wang, W., Eklund, A.: Beware of diffusion models for synthesizing medical images - a comparison with GANs in terms of memorizing brain tumor images (2023)

    Google Scholar 

  2. Bien, N., et al.: Deep-learning-assisted diagnosis for knee magnetic resonance imaging: development and retrospective validation of MRNet. PLOS Med. 15(11), 1ā€“19 (2018). https://doi.org/10.1371/journal.pmed.1002699

  3. Carlini, N., et al.: Extracting training data from diffusion models (2023)

    Google Scholar 

  4. Dorjsembe, Z., Odonchimed, S., Xiao, F.: Three-dimensional medical image synthesis with denoising diffusion probabilistic models. In: Medical Imaging with Deep Learning (2022)

    Google Scholar 

  5. Engelhardt, S., Sharan, L., Karck, M., Simone, R.D., Wolf, I.: Cross-domain conditional generative adversarial networks for stereoscopic hyperrealism in surgical training. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11768, pp. 155ā€“163. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32254-0_18

    Chapter  Google Scholar 

  6. GĆ¼ngƶr, A., et al.: Adaptive diffusion priors for accelerated MRI reconstruction. Med. Image Anal. 102872 (2023). https://doi.org/10.1016/j.media.2023.102872

  7. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.F., Lin, H. (eds.) Advances in Neural Information Processing Systems, vol. 33, pp. 6840ā€“6851. Curran Associates, Inc. (2020)

    Google Scholar 

  8. Kazerouni, A., Aghdam, E.K., Heidari, M., Azad, R., Fayyaz, M., Hacihaliloglu, I., Merhof, D.: Diffusion models in medical imaging: a comprehensive survey. Med. Image Anal. 88, 102846 (2023). https://doi.org/10.1016/j.media.2023.102846

    Article  Google Scholar 

  9. Khader, F., et al.: Denoising diffusion probabilistic models for 3D medical image generation. Sci. Rep. 13(1), 7303 (2023). https://doi.org/10.1038/s41598-023-34341-2

    Article  Google Scholar 

  10. Ɩzbey, M., Dalmaz, O., Dar, S.U., Bedel, H.A., Ɩzturk, c., GĆ¼ngƶr, A., Ƈukur, T.: Unsupervised medical image translation with adversarial diffusion models. IEEE Trans. Med. Imaging 1 (2023). https://doi.org/10.1109/TMI.2023.3290149

  11. Pfeiffer, M., et al.: Generating large labeled data sets for laparoscopic image processing tasks using unpaired image-to-image translation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11768, pp. 119ā€“127. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32254-0_14

    Chapter  Google Scholar 

  12. Pinaya, W.H.L., et al.: Brain imaging generation with latent diffusion models. In: Mukhopadhyay, A., Oksuz, I., Engelhardt, S., Zhu, D., Yuan, Y. (eds.) Deep Generative Models, DGM4MICCAI 2022, LNCS, vol. 13609, pp 117ā€“126. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-18576-2_12

  13. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10674ā€“10685 (2022). https://doi.org/10.1109/CVPR52688.2022.01042

  14. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2015

    Google Scholar 

  15. Somepalli, G., Singla, V., Goldblum, M., Geiping, J., Goldstein, T.: Diffusion art or digital forgery? investigating data replication in diffusion models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6048ā€“6058, June 2023

    Google Scholar 

  16. Somepalli, G., Singla, V., Goldblum, M., Geiping, J., Goldstein, T.: Understanding and mitigating copying in diffusion models (2023)

    Google Scholar 

  17. Wolleb, J., Bieder, F., SandkĆ¼hler, R., Cattin, P.C.: Diffusion models for medical anomaly detection. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention - MICCAI 2022, pp. 35ā€“45. Springer Nature Switzerland, Cham (2022). https://doi.org/10.1007/978-3-031-16452-1_4

    Chapter  Google Scholar 

  18. Wolleb, J., SandkĆ¼hler, R., Bieder, F., Valmaggia, P., Cattin, P.C.: Diffusion models for implicit image segmentation ensembles. In: Konukoglu, E., Menze, B., Venkataraman, A., Baumgartner, C., Dou, Q., Albarqouni, S. (eds.) Proceedings of The 5th International Conference on Medical Imaging with Deep Learning. Proceedings of Machine Learning Research, vol. 172, pp. 1336ā€“1348. PMLR, 06ā€“08 July 2022

    Google Scholar 

  19. Yi, X., Walia, E., Babyn, P.: Generative adversarial network in medical imaging: a review. Med. Image Anal. 58, 101552 (2019). https://doi.org/10.1016/j.media.2019.101552

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported through state funds approved by the State Parliament of Baden-WĆ¼rttemberg for the Innovation Campus Health + Life Science Alliance Heidelberg Mannheim, BMBF-SWAG Project 01KD2215D, and Informatics for life project through Klaus Tschira Foundation. The authors also gratefully acknowledge the data storage service SDS@hd supported by the Ministry of Science, Research and the Arts Baden-WĆ¼rttemberg (MWK) and the German Research Foundation (DFG) through grant INST 35/1314-1 FUGG and INST 35/1503-1 FUGG. The authors also acknowledge support by the state of Baden-WĆ¼rttemberg through bwHPC and the German Research Foundation (DFG) through grant INST 35/1597-1 FUGG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salman Ul Hassan Dar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dar, S.U.H. et al. (2024). Investigating Data Memorization in 3D Latent Diffusion Models for Medical Image Synthesis. In: Mukhopadhyay, A., Oksuz, I., Engelhardt, S., Zhu, D., Yuan, Y. (eds) Deep Generative Models. MICCAI 2023. Lecture Notes in Computer Science, vol 14533. Springer, Cham. https://doi.org/10.1007/978-3-031-53767-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53767-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53766-0

  • Online ISBN: 978-3-031-53767-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics