Skip to main content

Convolutional Autoencoder for Vision-Based Human Activity Recognition

  • Conference paper
  • First Online:
Intelligent Human Computer Interaction (IHCI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14532))

Included in the following conference series:

  • 81 Accesses

Abstract

Human activity recognition (HAR) is a crucial component for many current applications, including those in the healthcare, security, and entertainment sectors. At the current state of the art, deep learning outperforms machine learning with its ability to automatically extract features. Autoencoders (AE) and convolutional neural networks (CNN) are the types of neural networks that are known for their good performance in dimensionality reduction and image classification, respectively. As most of the methods introduced for classification purposes are limited to sensor based methods. This paper mainly focuses on vision based HAR where we present a combination of AE and CNN for the classification of labeled data, in which convolutional AE (conv-AE) is utilized for two functions: dimensionality reduction and feature extraction and CNN is employed for classifying the activities. For the proposed model’s implementation, public benchmark datasets KTH and Weizmann are considered, on which we have attained a recognition rate of 96.3%, 94.89% for both, respectively. Comparative analysis is provided for the proposed model for the above-mentioned datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Basly, H., Ouarda, W., Sayadi, F.E., Ouni, B., Alimi, A.M.: CNN-SVM Learning Approach based Human Activity Recognition, pp. 271–281. ICISP, Springer (2020)

    Google Scholar 

  2. Bouchabou, D., Nguyen, S.M., Lohr, C., LeDuc, B., Kanellos, I.: A survey of human activity recognition in smart homes based on IoT sensors algorithms: taxonomies, challenges, and opportunities with deep learning. Sensors, MDPI 21, 6037 (2021)

    Article  Google Scholar 

  3. Zhang, S., et al.: Deep learning in human activity recognition with wearable sensors: a review on advances. Sensors, MDPI 4, 1476 (2022)

    Article  Google Scholar 

  4. Alo, U.R., Nweke, H.F., The, Y.W., Murtaza, G.: Smartphone motion sensor-based complex human activity identification using deep stacked autoencoder algorithm for enhanced smart healthcare system. Sensors, MDPI 20, 6300 (2020)

    Article  Google Scholar 

  5. Gu, F., Khoshelham, K., Valaee, S., Shang, J., Zhang, R.: Locomotion activity recognition using stacked denoising autoencoders. IEEE Internet of Things Journal, IEEE 5, 2085–2093 (2018)

    Article  Google Scholar 

  6. Sunny, J.T., et al.: Applications and challenges of human activity recognition using sensors in a smart environment. IJIRST Int. J. Innov. Res. Sci. Technol 2, 50–57 (2015)

    Google Scholar 

  7. Kiruba, K., Shiloah, E.D., Sunil, R.R.C.: Hexagonal Volume Local Binary Pattern (H-VLBP) with Deep Stacked Autoencoder for Human Action Recognition. Cognitive Systems Research, Elsevier 58, 71–93 (2019)

    Article  Google Scholar 

  8. Gnouma, M., Ladjailia, A., Ejbali, R., Zaied, M.: Stacked sparse autoencoder and history of binary motion image for human activity recognition. Multimedia Tools and Applications, Springer 78, 2157–2179 (2019)

    Article  Google Scholar 

  9. Nigam, S., Singh, R., Singh, M.K., Singh, V.K.: Multiview human activity recognition using uniform rotation invariant local binary patterns. J. Ambient Intell. Humani. Comp. Springer, 1–19 (2022)

    Google Scholar 

  10. Song, X., Zhou, H., Liu, G.: Human behavior recognition based on multi-feature fusion of image. Cluster Computing, Springer 22, 9113–9121 (2019)

    Article  Google Scholar 

  11. Ramya, P., Rajeswari, R.: Human action recognition using distance transform and entropy based features. Multimedia Tools and Applications, Springer 80, 8147–8173 (2021)

    Article  Google Scholar 

  12. Mahmoud, R., Belgacem, S., Omri, M.N.: Towards an end-to-end Isolated and continuous deep gesture recognition process. Neural Computing and Applications, Springer 34, 13713–13732 (2022)

    Article  Google Scholar 

  13. Karuppannan, K., Darmanayagam, S.E., Cyril, S.R.R.: Human action recognition using fusion-based discriminative features and long short term memory classification. Concurrency and Computation: Practice and Experience, Wiley Online Library 34, e7250 (2022)

    Article  Google Scholar 

  14. Garg, A., Nigam, S., Singh, R.: Vision based Human Activity Recognition using Hybrid Deep Learning. CSI, IEEE, 1–6 (2022)

    Google Scholar 

  15. Singh, R., Nigam, S., Singh, A.K., Elhoseny, M.: Wavelets for Activity Recognition. Intelligent Wavelet Based Techniques for Advanced Multimedia Applications, Springer 10, 109–121 (2020)

    Article  Google Scholar 

  16. Dwivedi, N., Singh, D.K., Kushwaha, D.S.: A Novel Approach for Suspicious Activity Detection with Deep Learning. Multimedia Tools and Applications, pp. 1–24. Springer (2023)

    Google Scholar 

  17. Badhagouni, S.K., ViswanadhaRaju, S.: HBA optimized Efficient CNN in Human Activity Recognition. The Imaging Science Journal, Taylor & Francis 71, 66–81 (2023)

    Google Scholar 

  18. Saif, A.S., Wollega, E.D., Kalevela, S.A.: Spatio-temporal features based human action recognition using convolutional long short-term deep neural network. Int. J. Adv. Comp. Sci. Appl. Sci. Info. (SAI) Organization Limited 14, 66–81 (2023)

    Google Scholar 

  19. https://towardsdatascience.com/acomprehensive-guide-to-convolutional-neural-networks-the-eli5-way3bd2b1164a53/

  20. Schuldt, C., Laptev, I., Caputo, B.: Recognizing Human Actions: A Local SVM Approach. ICPR, IEEE 3, 32–36 (2004)

    Google Scholar 

  21. Blank, M., Gorelick, L., Shechtman, E., Irani, M., Basri, R.: Actions as Space-time Shapes. ICCV, IEEE 2, 1395–1402 (2005)

    Google Scholar 

  22. Nigam, S., Khare, A.: Integration of moment invariants and uniform local binary patterns for human activity recognition in video sequences. Multimedia Tools and Applications, Springer 75, 17303–17332 (2016)

    Article  Google Scholar 

  23. Naveed, H., Khan, G.A.U., Siddiqi, A., Khan, M.U.G.: Human activity recognition using mixture of heterogeneous features and sequential minimal optimization. International Journal of Machine Learning and Cybernetics, Springer 10, 2329–2340 (2019)

    Google Scholar 

  24. Nadeem, A., Jalal, A., Kim, K.: Human Actions Tracking and Recognition based on Body Parts Detection via Artificial Neural Network. ICACS, IEEE, pp. 1–6 (2020)

    Google Scholar 

  25. Song, B.: Application of Fuzzy Clustering Model in the Classification of Sports Training Movements. Computational Intelligence and Neuroscience, Hindawi, 2022 (2022)

    Google Scholar 

  26. Haq, I.U., Iwata, T., Kawahara, Y.: Dynamic mode decomposition via convolutional autoencoders for dynamics modeling in videos. Comput. Vis. Image Underst. 216, 103355 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajiv Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jain, S., Garg, A., Nigam, S., Singh, R., Shastri, A., Singh, I. (2024). Convolutional Autoencoder for Vision-Based Human Activity Recognition. In: Choi, B.J., Singh, D., Tiwary, U.S., Chung, WY. (eds) Intelligent Human Computer Interaction. IHCI 2023. Lecture Notes in Computer Science, vol 14532. Springer, Cham. https://doi.org/10.1007/978-3-031-53830-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53830-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53829-2

  • Online ISBN: 978-3-031-53830-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics