Skip to main content

Interference Mitigation in Multi-radar Environment Using LSTM-Based Recurrent Neural Network

  • Conference paper
  • First Online:
Intelligent Human Computer Interaction (IHCI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14532))

Included in the following conference series:

  • 85 Accesses

Abstract

External disturbances, such as interference, have a significant impact on the functionality of radio detection and ranging (radar) systems, which are employed for the identification, ranging, and imaging of target objects. As radar systems are increasingly adopted across various sectors for different applications, it is essential to handle interference issues appropriately to mitigate false detections, poor signal-to-noise ratio (SNR), and reduced resolution. In the current paper, we introduce a Long Short-Term Memory (LSTM)—based multi-layer recurrent neural network (RNN) to tackle interference problems in a multi-radar setting. In the simulation, a 4-layered LSTM-RNN is trained with 50 different chirp rate interference signals. The efficiency of the introduced interference mitigation technique is evaluated by testing the randomly selected coherently interfered signals, non-coherently interfered signals, and a combination of both on the trained model. The LSTM-RNN effectively suppresses ghost targets in the range profile in the case of coherently interfered signals. Furthermore, the LSTM-RNN enhances the signal-to-interference noise ratio (SINR) by > 18dB in all cases. Thus, the proposed LSTM-RNN offers a promising solution to improve the accuracy and reliability of radar operation in multi-radar environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Parker, M.: Radar Basics, Digital Signal Processing 101. 2nd edn., pp. 231–240. Newnes (2017)

    Google Scholar 

  2. Gurbuz, Z., Griffiths, H., Charlish, A., Rangaswamy, M., Greco, M., Bell, K.: An overview of cognitive radar: past, present, and future. In: IEEE aerospace and electronic systems magazine, 34(12), 6–18 (2019)

    Google Scholar 

  3. Bilik, I., Longman, O., Villeval, S., Tabrikian, J.: The rise of radar for autonomous vehicles: signal processing solutions and future research directions. IEEE Signal Process. Magazine 36(5), 20–31 (2019)

    Google Scholar 

  4. Xu, Z., Shi, Q.: Interference mitigation for automotive radar using orthogonal noise waveforms. IEEE Geosci. Remote Sensing Lett. 15(1), 137–141 (2018)

    Google Scholar 

  5. Galati, G., Pavan, G., Wasserzier, C.: Signal design and processing for noise radar. EURASIP J. Adv. Signal Process 52 (2022)

    Google Scholar 

  6. Skaria, S., Al-Hourani, A., Evans, R., Sithamparanathan, K., Parampalli, U.: Interference mitigation in automotive radars using pseudo-random cyclic orthogonal sequences. Sensors 19(20), 4459 (2019)

    Article  Google Scholar 

  7. Uysal, F.: Phase-coded FMCW automotive radar: system design and interference mitigation. IEEE Trans. Veh. Technol. 69(1), 270–281 (2020)

    Article  MathSciNet  Google Scholar 

  8. Lee, S., Lee, J., Kim, S.: Mutual interference suppression using wavelet denoising in automotive FMCW radar systems. IEEE Trans. Intell. Transp. Syst. 22(2), 887–897 (2021)

    Article  Google Scholar 

  9. Choi, Y.: Adaptive nulling beamformer for rejection of coherent and noncoherent interferences. Signal Process. 92(2), 607–610 (2012)

    Article  Google Scholar 

  10. Lee, T., Lin, T.: Coherent interference suppression with complementally transformed aadaptive beamformer. IEEE Trans. Antennas Propag. 46(5), 609–617 (1998)

    Article  Google Scholar 

  11. Rock, J., Toth, M., Messner, E., Meissner, P., Pernkopf, F.: Complex signal denoising and ınterference mitigation for automotive radar using convolutional neural networks. In: 22th International conference on ınformation fusion (FUSION), pp. 1–8, Ottawa, ON, Canada (2019). https://doi.org/10.23919/FUSION43075.2019.9011164

  12. Fuchs, J., Dubey, A., Lübke, M., Weigel, R., Lurz, F.: Automotive radar ınterference mitigation using a convolutional autoencoder. IEEE Int. Radar Conf. (RADAR), pp. 315–320, Washington, DC, USA (2020). https://doi.org/10.1109/RADAR42522.2020.9114641

  13. Mun, J., Ha, S., Lee, J.: Automotive radar signal ınterference mitigation using RNN with self attention. In: ICASSP IEEE ınternational conference on acoustics, speech and signal processing (ICASSP), pp. 3802–3806, Barcelona, Spain (2020). https://doi.org/10.1109/ICASSP40776.2020.9053013

  14. Hille, J., Auge, D., Grassmann, C., Knoll, A.: FMCW radar2radar ınterference detection with a recurrent neural network. In: IEEE radar conference (RadarConf22), pp. 1–6, New York City, NY, USA (2022). https://doi.org/10.1109/RadarConf2248738.2022.9764236

  15. Rameez, M., Javadi, S., Dahl, M., Pettersson, M.: Signal reconstruction using Bi-LSTM for automotive radar ınterference mitigation. In: 18th European radar conference (EuRAD), pp. 74–77, London, United Kingdom (2022). https://doi.org/10.23919/EuRAD50154.2022.9784516

  16. Kingma, Diederik, P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

Download references

Acknowledgement

This work was supported by the Nazarbayev University (NU) Collaborative Research Project (grant no. 11022021CRP15070), Faculty Development Competitive Research Grant (grant no. 021220FD0451), and the Ministry of Education and Science of the Republic of Kazakhstan (AP14871109, AP13068587).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ikechi Augustine Ukaegbu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Parajuli, H.N., Bakhtiyarov, G., Nakarmi, B., Ukaegbu, I.A. (2024). Interference Mitigation in Multi-radar Environment Using LSTM-Based Recurrent Neural Network. In: Choi, B.J., Singh, D., Tiwary, U.S., Chung, WY. (eds) Intelligent Human Computer Interaction. IHCI 2023. Lecture Notes in Computer Science, vol 14532. Springer, Cham. https://doi.org/10.1007/978-3-031-53830-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53830-8_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53829-2

  • Online ISBN: 978-3-031-53830-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics