Skip to main content

A Wizard of Oz Pilot Study for Designing an Adaptive Pedestrian Navigation System

  • Conference paper
  • First Online:
AI Approaches for Designing and Evaluating Interactive Intelligent Systems (ROCHI 2022)

Abstract

“But what a pain not to know your way around!...” Today’s pedestrian navigation aid systems are widely used, but not always adapted to the person or the context. For example, “go east for 500 m” is not always or often a usable indication. The aim of this chapter is to illustrate how to use the wizard of oz technique to envisage and test more user-friendly solutions for pedestrian mobility, without investing significant resources in full system development. Study focuses on photo guidance of landmarks. Such solutions can then be integrated into adaptive navigation aid systems, combining Human-Computer Interaction (HCI) and Artificial Intelligence (AI) methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. D. Ahmetovic, C. Gleason, C. Ruan, K. Kitani, H. Takagi, C. Asakawa, Navcog: a navigational cognitive assistant for the blind, in Proceedings of the 18th International Conference on Human-Computer Interaction with Mobile Devices and Services, MobileHCI ’16 (Association for Computing Machinery, New York, NY, USA, 2016), pp. 90–99. https://doi.org/10.1145/2935334.2935361

  2. S. Al-Khalifa, M. Al-Razgan, Ebsar: indoor guidance for the visually impaired. Comput. Electr. Eng. 54, 26–39 (2016). https://doi.org/10.1016/j.compeleceng.2016.07.015

    Article  Google Scholar 

  3. A. Alauzet, F. Conte, J. Sanchez, D. Velche, Les personnes en situation de handicap mental, psychique ou cognitif et l’usage des transports. Rapport final Projet POTAS 2 (2010)

    Google Scholar 

  4. G. Alce, M. Wallergård, K. Hermodsson, Wozard: a wizard of oz method for wearable augmented reality interaction - a pilot study. Adv. Hum. Comput. Interact. 2015, 271,231:1–271,231:10 (2015). https://doi.org/10.1155/2015/271231, https://doi.org/10.1155/2015/271231

  5. M. Alsaqer, B. Hilton, Indirect wayfinding navigation system for the elderly, in Proceedings of the AMCIS 2015 (AIS eLibrary, Atlanta, USA, 2015), p. 37

    Google Scholar 

  6. American Psychiatric Association: Diagnostic and statistical manual of mental disorders, 5 edn. Author, Washington, DC (2013). https://doi.org/10.1176/appi.books.9780890425596

  7. J. Brooke, SUS-A quick and dirty usability scale, in Usability Evaluation in Industry. ed. by P.W. Jordan, B. Thomas, I.L. McClelland, B. Weerdmeester (Taylor and Francis, London, 1996), pp.189–194

    Google Scholar 

  8. A. Budrionis, D. Plikynas, P. Daniusis, A. Indrulionis: smartphone-based computer vision travelling aids for blind and visually impaired individuals: a systematic review. Assist. Technol. 34 (2020). https://doi.org/10.1080/10400435.2020.1743381

  9. G. Castiglia, A.E. Majjodi, F. Calò, Y. Deldjoo, F. Narducci, A. Starke, C. Trattner, Nudging towards health in a conversational food recommender system using multi-modal interactions and nutrition labels, in Proceedings of the Fourth Knowledge-aware and Conversational Recommender Systems Workshop co-located with 16th ACM Conference on Recommender Systems (RecSys 2022), Seattle, WA, USA, September 22nd, 2022, CEUR Workshop Proceedings, ed. by V.W. Anelli, P. Basile, G. de Melo, F.M. Donini, A. Ferrara, C. Musto, F. Narducci, A. Ragone, M. Zanker, vol. 3294. CEUR-WS.org (2022), pp. 29–35. https://ceur-ws.org/Vol-3294/long1.pdf

  10. L. Clark, D.D. Nguyen, R.H.G. Tan, User-centered design and evaluation of pedestrian navigation aids: a review. Int. J. Hum.-Comput. Interact. 33(11), 831–853 (2017)

    Google Scholar 

  11. A. Coutrot, E. Manley, S. Goodroe, C. Gahnstrom, G. Filomena, D. Yesiltepe, R.C. Dalton, J.M. Wiener, C. Hölscher, M. Hornberger, H.J. Spiers, Entropy of city street networks linked to future spatial navigation ability. Nature 604, 104–110 (2022)

    Article  Google Scholar 

  12. N. Dahlbäck, A. Jönsson, L. Ahrenberg, Wizard of oz studies—why and how. Know.-Based Syst. 6(4), 258-266 (1993). https://doi.org/10.1016/0950-7051(93)90017-N, https://doi.org/10.1016/0950-7051(93)90017-N

  13. M. Elgendy, C. Sik-Lányi, Review on smart solutions for people with visual impairment, in Lecture Notes in Computer Science, vol. 10896, ed. by K. Miesenberger, G. kouroupetroglou; Computers Helping People with Special Needs. ICCHP 2018 (Springer, Berlin, 2018), pp. 81–84. 10.1007/978-3-319-94277-3_15

    Google Scholar 

  14. D. Elsweiler, A. Frummet, M. Harvey, Comparing wizard of oz & observational studies for conversational IR evaluation. Datenbank-Spektrum 20(1), 37–41 (2020). https://doi.org/10.1007/s13222-020-00333-z

  15. A. Fiedler, M. Gabsdil, Supporting progressive refinement of wizard-of-oz experiments, in Proceedings of the ITS 2002 - Workshop on Empirical Methods for Tutorial Dialogue Systems, San Sebastian, Spain, ed. by C.P. Rose, V. Aleven (2002), pp. 62–69

    Google Scholar 

  16. O. Gaggi, C.E. Palazzi, M. Ciman, A. Bujari, Stepbywatch: a smartwatch-based enhanced navigation system for visually impaired users, in 2018 15th IEEE Annual Consumer Communications & Networking Conference (CCNC) (IEEE Press, 2018), pp. 1–5. https://doi.org/10.1109/CCNC.2018.8319311

  17. A. Ganz, J.M. Schafer, Y. Tao, C. Wilson, M. Robertson, Percept-ii: Smartphone based indoor navigation system for the blind, in 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (2014), pp. 3662–3665. https://doi.org/10.1109/EMBC.2014.6944417

  18. P. Green, L. Wei-Haas, The rapid development of user interfaces: experience with the wizard of oz method. Proceedings of the Human Factors and Ergonomics Society Annual Meeting 29, 470–474 (1985)

    Article  Google Scholar 

  19. E. Grison, V. Gyselinck, La cognition spatiale pour repenser les aides à la navigation. L’Année psychologique 119 (2019). https://doi.org/10.3917/anpsy1.192.0243

  20. Y. Guedira, C. Kolski, S. Lepreux, Pedestrian navigation through pictograms and landmark photos on smart glasses: a pilot study, in 19th International Conference on Human-Computer Interaction, RoCHI 2022, Craiova, Romania/Hybrid, October 6–7, 2022, ed. by P. Popescu, C. Kolski. Matrix Rom (2022), pp. 13–20

    Google Scholar 

  21. M. Hegarty, A.E. Richardson, D.R. Montello, K. Lovelace, I. Subbiah, Development of a self-report measure of environmental spatial ability. J. Intell. 30, 425–447 (2002)

    Google Scholar 

  22. R. Ivanov, Indoor navigation system for visually impaired, in Proceedings of the 11th International Conference on Computer Systems and Technologies and Workshop for Ph.D. Students in Computing on International Conference on Computer Systems and Technologies, CompSysTech ’10 (Association for Computing Machinery, New York, NY, USA, 2010), pp. 143–149. https://doi.org/10.1145/1839379.1839405

  23. R. Jacob, P. Mooney, P. Corcoran, A. Winstanley, Integrating haptic feedback to pedestrian navigation applications, in GISRUK, GIS Research UK 19th Annual Conference, 27–29 April 2011. Portsmouth 2011 (2011), pp. 205–210

    Google Scholar 

  24. S. Janarthanam, O. Lemon, A two-tier user simulation model for reinforcement learning of adaptive referring expression generation policies, in Proceedings of the SIGDIAL 2009 Conference, The 10th Annual Meeting of the Special Interest Group on Discourse and Dialogue, 11–12 September 2009, London, UK, ed. by P.G.T. Healey, R. Pieraccini, D.K. Byron, S.J. Young, M. Purver (The Association for Computer Linguistics, 2009), pp. 120–123. https://aclanthology.org/W09-3916/

  25. T. Kanda, M. Kamashima, M. Imai, T. Ono, D. Sakamoto, H. Ishiguro, Y. Anzai, A humanoid robot that pretends to listen to route guidance from a human. Auton. Robots 22(1), 87–100 (2007). https://doi.org/10.1007/s10514-006-9007-6

    Article  Google Scholar 

  26. B.F.G Katz, S. Kammoun, G. Parseihian, O. Gutierrez, A. Brilhault, M. Auvray, P. Truillet, M. Denis, S. Thorpe, C. Jouffrais, Navig: augmented reality guidance system for the visually impaired. Virtual Reality 16, 253–269 (2012). https://doi.org/10.1007/s10055-012-0213-6

  27. T. Kolbe, Augmented videos and panoramas for pedestrian navigation. Geowissenschaftliche Mitteilungen 66 (2003)

    Google Scholar 

  28. A. Lakehal, S. Lepreux, L. Letalle, C. Kolski, State model of wayfinding task with the goal to design a support system for mobility of people with intellectual disabilities, in Proceedings of the 30th Conference on L’Interaction Homme-Machine, IHM ’18 (ACM, New York, NY, USA, 2018), pp. 202–208. https://doi.org/10.1145/3286689.3286710, http://doi.acm.org/10.1145/3286689.3286710

  29. A. Lakehal, S. Lepreux, L. Letalle, C. Kolski, From wayfinding model to future context-based adaptation of HCI in urban mobility for pedestrians with active navigation needs. Int. J. Hum. Comput. Interact. 37(4), 378–389 (2021). https://doi.org/10.1080/10447318.2020.1860546

    Article  Google Scholar 

  30. L. Letalle, A. Lakehal, H. Mengue-Topio, J. Saint-Mars, C. Kolski, S. Lepreux, F. Anceaux, Ontology for mobility of people with intellectual disability: building a basis of definitions for the development of navigation aid systems, in HCI in Mobility, Transport, and Automotive Systems. Automated Driving and In-Vehicle Experience Design. HCII. LNCS, vol. 12212 (Springer, Copenhagen, Denmark, 2020), pp. 322–334. https://doi.org/10.1007/978-3-030-50523-3_23

    Google Scholar 

  31. A.X. Li, J.V.H Bonner, Developing smart domestic applications using a wizard of oz methodology, in Workshop Proceedings of the 7th International Conference on Intelligent Environments, IE 2011, Nottingham, United Kingdom, July 25–28, 2011, Ambient Intelligence and Smart Environments, ed. by J.C. Augusto, H.K. Aghajan, V. Callaghan, D.J. Cook, J. O’Donoghue, S. Egerton, M. Gardner, B.D. Johnson, Y. Kovalchuk, R. López-Cózar, P. Mikulecký, J.W.P. Ng, R. Poppe, M. Wang, V. Zamudio, vol. 10 (IOS Press, 2011), pp. 395–405. https://doi.org/10.3233/978-1-60750-795-6-395, https://doi.org/10.3233/978-1-60750-795-6-395

  32. A.L. Liu, H. Hile, G. Borriello, P.A. Brown, M. Harniss, H. Kautz, K. Johnson, Customizing directions in an automated wayfinding system for individuals with cognitive impairment, in Proceedings of the 11th International ACM SIGACCESS Conference on Computers and Accessibility, Assets ’09, pp. 27–34 (Association for Computing Machinery, New York, NY, USA, 2009). https://doi.org/10.1145/1639642.1639649, https://doi.org/10.1145/1639642.1639649

  33. A.L. Liu, H. Hile, H. Kautz, G. Borriello, P.A. Brown, M. Harniss, K. Johnson, Indoor wayfinding: developing a functional interface for individuals with cognitive impairments. Disabil. Rehabil.: Assist. Technol. 3(1–2), 69–81 (2008). https://doi.org/10.1080/17483100701500173

  34. S.J. Lupien, M. de Leon, S. de Santi, A. Convit, C. Tarshish, N. Nair, M. Thakur, B.S. McEwen, R.L. Hauger, M.J. Meaney, Cortisol levels during human aging predict hippocampal atrophy and memory deficits. Nat. Neurosci. 1(1), 69–73 (1998)

    Article  Google Scholar 

  35. B. Martin, B. Hanington, Universal Methods of Design: 100 Ways to Research Complex Problems, Develop Innovative Ideas, and Design Effective Solutions (Rockport Publishers, Beverly, MA, 2012)

    Google Scholar 

  36. H. Mengue-Topio, L. Letalle, Y. Courbois, P. Pudlo, Independent travel and people with intellectual disabilities: viewpoints of support staff about travel patterns, skills and use of technological solutions, in HCI in Mobility, Transport, and Automotive Systems - 5th International Conference, MobiTAS 2023, Held as Part of the 25th HCI International Conference, HCII 2023, Copenhagen, Denmark, July 23–28, 2023, Proceedings, Part II, Lecture Notes in Computer Science, ed. by H. Krömker, vol. 14049 (Springer, 2023), pp. 275–288. 10.1007/978-3-031-35908-8_19. https://doi.org/10.1007/978-3-031-35908-8_19

  37. C. Munteanu, M. Boldea, MDWOZ: a wizard of oz environment for dialog systems development, in Proceedings of the Second International Conference on Language Resources and Evaluation, LREC 2000, 31 May–June 2, 2000, Athens, Greece (European Language Resources Association, 2000). http://www.lrec-conf.org/proceedings/lrec2000/html/summary/104.htm

  38. T. Nagaosa, S. Hozumi, A proposal of the rendezvous navigation system, in 2013 13th International Conference on ITS Telecommunications (ITST) (2013), pp. 367–371. https://doi.org/10.1109/ITST.2013.6685574

  39. M. Nakajima, S. Haruyama, Indoor navigation system for visually impaired people using visible light communication and compensated geomagnetic sensing, in 2012 1st IEEE International Conference on Communications in China (ICCC) (2012), pp. 524–529. https://doi.org/10.1109/ICCChina.2012.6356940

  40. C. Ohm, M. Müller, B. Ludwig, Evaluating indoor pedestrian navigation interfaces using mobile eye tracking. Spat. Cogn. Comput. 17(1–2), 89–120 (2017). https://doi.org/10.1080/13875868.2016.1219913

    Article  Google Scholar 

  41. G. Olmschenk, C. Yang, Z. Zhu, H. Tong, W.H. Seiple, Mobile crowd assisted navigation for the visually impaired, in 2015 IEEE 12th International Conferences on Ubiquitous Intelligence and Computing and 2015 IEEE 12th International Conferences on Autonomic and Trusted Computing and 2015 IEEE 15th International Conferences on Scalable Computing and Communications and Its Associated Workshops (UIC-ATC-ScalCom) (2015), pp. 324–327. https://doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP.2015.69

  42. M. Pacaux-Lemoine, A. Loiselet, A common work space to support the cooperation in the cockpit ofa two-seater fighter aircraft, in Cooperative Systems Design, A Challenge of the Mobility Age, Proceedings of COOP 2002, Saint-Raphaël, France, 4-7 June 2002, ed. by M. Blay-Fornarino, A. Pinna-Dery, K. Schmidt, P. Zaraté (IOS, 2002), pp. 157–172

    Google Scholar 

  43. L. Pacini, S. Lepreux, C. Kolski, Towards behavioral adaptation for people with intellectual disabilities in a mobility context, in 19th International Conference on Human-Computer Interaction, RoCHI 2022, Craiova, Romania/Hybrid, October 6–7, 2022, ed. by P. Popescu, C. Kolski (Matrix Rom, 2022), pp. 126–129

    Google Scholar 

  44. J.E. Pérez, M. Arrue, M. Kobayashi, H. Takagi, C. Asakawa, Assessment of semantic taxonomies for blind indoor navigation based on a shopping center use case, in Proceedings of the 14th International Web for All Conference, W4A ’17. Association for Computing Machinery, New York, NY, USA (2017). https://doi.org/10.1145/3058555.3058575

  45. M. Pielot, B. Poppinga, S. Boll, Pocketnavigator: vibro-tactile waypoint navigation for everyday mobile devices, in Proceedings of the 12th International Conference on Human Computer Interaction with Mobile Devices and Services, MobileHCI ’10 (Association for Computing Machinery, New York, NY, USA, 2010), p. 423–426. https://doi.org/10.1145/1851600.1851696

  46. C. Prandi, B. Barricelli, S. Mirri, D. Fogli, Accessible wayfinding and navigation: a systematic mapping study. Univers. Access Inf. Soc. 22 (2021). https://doi.org/10.1007/s10209-021-00843-x

  47. C. Prandi, G. Delnevo, C. Ceccarini, On augmenting the experience of people with mobility impairments while exploring the city: a case study with wearable devices, in 2018 15th IEEE Annual Consumer Communications & Networking Conference (CCNC) (2018), pp. 1–5. https://doi.org/10.1109/CCNC.2018.8319247

  48. L.D. Riek, Wizard of oz studies in hri: a systematic review and new reporting guidelines. J. Hum.-Robot. Interact. 1(1), 119–136 (2012). https://doi.org/10.5898/JHRI.1.1.Riek

  49. M. Rodriguez-Sanchez, J. Martinez-Romo, Gawa—manager for accessibility wayfinding apps. Int. J. Inf. Manag. 37(6), 505–519 (2017). https://doi.org/10.1016/j.ijinfomgt.2017.05.011

  50. A.W. Roesler, S.G. McLellan, What help do users need? Taxonomies for on-line information needs & access methods, in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’95 (ACM Press/Addison-Wesley Publishing Co., USA, 1995), pp. 437–441. 10.1145/223904.223963. https://doi-org.ins2i.bib.cnrs.fr/10.1145/223904.223963

  51. S. Scherer, P. Strauß, A flexible wizard of oz environment for rapid prototyping, in Proceedings of the International Conference on Language Resources and Evaluation, LREC 2008, 26 May - 1 June 2008, Marrakech, Morocco (European Language Resources Association, 2008). http://www.lrec-conf.org/proceedings/lrec2008/summaries/240.html

  52. R. Taib, N. Ruiz, Wizard of oz for multimodal interfaces design: Deployment considerations, in Human-Computer Interaction. Interaction Design and Usability, 12th International Conference, HCI International 2007, Beijing, China, July 22–27, 2007, Proceedings, Part I, Lecture Notes in Computer Science, ed. by J.A. Jacko, vol. 4550 (Springer, 2007), pp. 232–241. 10.1007/978-3-540-73105-4_26. https://doi.org/10.1007/978-3-540-73105-4_26

  53. J.C. Torrado, G. Montoro, J. Gomez, Easing the integration: a feasible indoor wayfinding system for cognitive impaired people. Pervasive Mob. Comput. 31, 137–146 (2016). https://doi.org/10.1016/j.pmcj.2016.02.003

  54. J.M. Wiener, S.J. Büchner, C. Hölscher, Taxonomy of human wayfinding tasks: a knowledge-based approach. Spat. Cogn. Comput. 9(2), 152–165 (2009). https://doi.org/10.1080/13875860902906496

    Article  Google Scholar 

  55. J. Wilson, B.N. Walker, J. Lindsay, C. Cambias, F. Dellaert, Swan: system for wearable audio navigation, in 2007 11th IEEE International Symposium on Wearable Computers (2007), pp. 91–98. https://doi.org/10.1109/ISWC.2007.4373786

  56. Y. Zhang, C. Madier, C. Bach, G. Calvet, Prototyping an intelligent satellite supervision system using wizard of oz, in IHM’23–34e Conférence Internationale Francophone sur l’Interaction Humain-Machine (Troyes, France, 2023)

    Google Scholar 

Download references

Acknowledgements

This work has been realized in the SAMDI Project supported by the Region Hauts-de-France. The authors also thank PSITEC (Univ. Lille), UDAPEI, APEI de Valenciennes, APEI de Denain and the “Nous Aussi” association, the Urban Labs Technologies company, the PRIMOH and MESHS networks. Finally, they thank all the participants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Kolski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guedira, Y., Lepreux, S., Kolski, C. (2024). A Wizard of Oz Pilot Study for Designing an Adaptive Pedestrian Navigation System. In: Kolski, C., Mihăescu, M.C., Rebedea, T. (eds) AI Approaches for Designing and Evaluating Interactive Intelligent Systems. ROCHI 2022. Learning and Analytics in Intelligent Systems, vol 36. Springer, Cham. https://doi.org/10.1007/978-3-031-53957-2_3

Download citation

Publish with us

Policies and ethics