Abstract
The police’s Open Source Intelligence (OSINT) team is constantly looking for better ways to analyze large corpora with high precision. This paper presents the evaluation by the OSINT team of more advanced methods than currently used to extract information from tweets related to an upcoming large-scale demonstration. An initial interview revealed the current way of working. Next, more advanced machine learning techniques such as sentiment analysis and network analysis are used to create visualizations that would better suit OSINT’s needs. Finally, our proposed visualizations are evaluated by two OSINT analysts who state that the results are clear, actionable, and relevant, whereas completeness of information and privacy pose additional challenges.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
fastText. https://fasttext.cc/. Accessed 12 July 2023
AD. Verkeershinder verwacht op 11 maart vanwege demonstraties (2023). https://www.ad.nl/den-haag/verkeershinder-verwacht-op-11-maart-vanwege-demonstraties~a17f2841/. Accessed 11 Mar 2023
Alfano, M., Reimann, R., Quintana, I.O., Chan, A., Cheong, M., Klein, C.: The affiliative use of emoji and hashtags in the Black Lives Matter movement in Twitter. Soc. Sci. Comput. Rev., 08944393221131928 (2022)
Amiri, B., Karimianghadim, R., Yazdanjue, N., Hossain, L.: Research topics and trends of the hashtag recommendation domain. Scientometrics 126, 2689–2735 (2021)
Bauermeister, M.R.: Social capital and collective identity in the local food movement. Int. J. Agric. Sustain. 14(2), 123–141 (2016)
Berard, B.: I second that emoji: the standards, structures, and social production of emoji. First Monday (2018)
Biggs, M.: Size matters: quantifying protest by counting participants. Soc. Methods Res. 47(3), 351–383 (2018)
Burch, L.M., Frederick, E.L., Pegoraro, A.: Kissing in the carnage: an examination of framing on Twitter during the Vancouver riots. J. Broadcast. Electron. Media 59(3), 399–415 (2015)
Chen, Y., Yuan, J., You, Q., Luo, J.: Twitter sentiment analysis via bi-sense emoji embedding and attention-based LSTM. In: Proceedings of the 26th ACM International Conference on Multimedia, pp. 117–125 (2018)
DVHN: Den Haag zet zich schrap: stad dreigt op 11 maart volledig vast te lopen door protesten, 6 March 2023. https://dvhn.nl/binnenland/Den-Haag-zet-zich-schrap-stad-dreigt-op-11-maart-volledig-vast-te-lopen-door-protesten-28282312.html. Accessed 12 July 2023
Fede, H., Herrera, I., Mahdi Seyednezhad, S.M., Menezes, R.: Representing emoji usage using directed networks: a twitter case study. In: Cherifi, C., Cherifi, H., Karsai, M., Musolesi, M. (eds.) COMPLEX NETWORKS 2017 2017. SCI, vol. 689, pp. 829–842. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-72150-7_67
Gerlitz, C., Rieder, B.: Mining one percent of Twitter: collections, baselines, sampling. M/C J. 16(2) (2013)
Giugni, M.: How social movements matter: past research, present problems, future developments. How Social Movements Matter, pp. xiii–xxxiii (1999)
Rakibul Hasan, Md., Maliha, M., Arifuzzaman, M.: Sentiment analysis with NLP on Twitter data. In: 2019 International Conference on Computer, Communication, Chemical, Materials and Electronic Engineering (IC4ME2), pp. 1–4. IEEE (2019)
Hong, L., Dan, O., Davison, B.D.: Predicting popular messages in Twitter. In: Proceedings of the 20th International Conference Companion on World Wide Web, pp. 57–58 (2011)
Jongeneel, M.: Burgemeester Jan van Zanen (VVD) bereidt zich voor op mogelijke verkeers- en protestchaos op 11 maart in Den Haag (2023). https://www.dagelijksestandaard.nl/binnenland/burgemeester-jan-van-zanen-vvd-bereidt-zich-voor-op-mogelijke-verkeers-en-protestchaos-op-11-maart-in-den-haag. Accessed 12 July 2023
Kejriwal, M., Wang, Q., Li, H., Wang, L.: An empirical study of emoji usage on Twitter in linguistic and national contexts. Online Soc. Netw. Media 24, 100149 (2021)
Kimura-Thollander, P., Kumar, N.: Examining the “global” language of emojis: designing for cultural representation. In: Proceedings of the 2019 CHI conference on Human Factors in Computing Systems, pp. 1–14 (2019)
Kywe, S.M., Hoang, T.-A., Lim, E.-P., Zhu, F.: On recommending hashtags in twitter networks. In: Aberer, K., Flache, A., Jager, W., Liu, L., Tang, J., Guéret, C. (eds.) SocInfo 2012. LNCS, vol. 7710, pp. 337–350. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35386-4_25
Lashari, I.A., Wiil, U.K.: Monitoring public opinion by measuring the sentiment of retweets on Twitter. In: 3rd European Conference on Social Media, pp. 153–161. Academic Conferences and Publishing International (2016)
Li, M., Ch’ng, E., Chong, A.Y.L., See, S.: Multi-class Twitter sentiment classification with emojis. Ind. Manage. Data Syst. 118, 1804–1820 (2018)
Liu, Y., Kliman-Silver, C., Mislove, A.: The tweets they are a-Changin’: evolution of Twitter users and behavior. In: Eighth International AAAI Conference on Weblogs and Social Media (2014)
Ljubešić, N., Fišer, D.: A global analysis of emoji usage. In: Proceedings of the 10th Web as Corpus Workshop, pp. 82–89 (2016)
Meijer, A.J.: Politie en sociale media. Van hype naar onderbouwde keuzen. Reed Business Information (2013)
Meyer, D.S., Tarrow, S.: A movement society: contentious politics for a new century. In: The Social Movement Society: Contentious Politics for a New Century, pp. 1–28 (1998)
RTL Nieuws: Den Haag wacht gespannen protestdag met boeren en klimaatactivisten: Vijf vragen, 11 March 2023. https://www.rtlnieuws.nl/nieuws/nederland/artikel/5370786/demonstranten-extinction-rebellion-a12-boerenprotest. Accessed 11 Mar 2023
NRC: Farmers Defence Force wil op 11 maart weer demonstreren in Den Haag, 8 February 2023. https://www.nrc.nl/nieuws/2023/02/08/farmers-defence-force-wil-op-11-maart-weer-demonstreren-in-den-haag-a4156582. Accessed 12 July 2023
Utrecht Universiy Institute of Information and Computing Sciences. Ethics and Privacy (2023). https://www.uu.nl/en/research/institute-of-information-and-computing-sciences/ethics-and-privacy. Accessed 21 July 2023
Procter, R., Vis, F., Voss, A.: Reading the riots on Twitter: methodological innovation for the analysis of big data. Int. J. Soc. Res. Methodol. 16(3), 197–214 (2013)
Rachman, F.H., et al.: Twitter sentiment analysis of Covid-19 using term weighting TF-IDF and logistic regression. In: 2020 6th Information Technology International Seminar (ITIS), pp. 238–242. IEEE (2020)
Ranney, K.R.: Social media use and collective identity within the occupy movement. Ph.D. thesis, Honolulu, University of Hawaii at Manoa (2014)
Rivers. C.M., Lewis, B.L.: Ethical research standards in a world of big data. F1000Research 3, 38 (2014)
Sabucedo, J.-M., Gómez-Román, C., Alzate, M., van Stekelenburg, J., Klandermans, B.: Comparing protests and demonstrators in times of austerity: regular and occasional protesters in universalistic and particularistic mobilisations. Soc. Mov. Stud. 16(6), 704–720 (2017)
Schäfer, M.T., Franzke, A., Utrecht, G., Fransen, R.: De ethische data assistent (DEDA) (2022). https://deda.dataschool.nl/wp-content/uploads/sites/415/2022/11/DEDA-NL.handbook.V3.1.pdf
Schermer, B.W., Hagenauw, D., Falot, N.: Handleiding Algemene verordening gegevensbescherming en Uitvoeringswet Algemene verordening gegevensbescherming, 22 January 2018. https://www.rijksoverheid.nl/onderwerpen/privacy-en-persoonsgegevens/documenten/rapporten/2018/01/22/handleiding-algemene-verordening-gegevensbescherming. Accessed 16 Feb 2023
Singh, S., Kumar, K., Kumar, B.: Sentiment analysis of Twitter data using TF-IDF and machine learning techniques. In: 2022 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COM-IT-CON), vol. 1, pp. 252–255. IEEE (2022)
Sloan, L., Morgan, J., Burnap, P., Williams, M.: Who tweets? Deriving the demographic characteristics of age, occupation and social class from Twitter user meta-data. PLoS ONE 10(3), e0115545 (2015)
Soule, S.A., Olzak, S.: When do movements matter? The politics of contingency and the equal rights amendment. Am. Sociol. Rev. 69(4), 473–497 (2004)
Tonkin, E., Pfeiffer, H.D., Tourte, G.: Twitter, information sharing and the London riots? Bull. Am. Soc. Inf. Sci. Technol. 38(2), 49–57 (2012)
Utrecht University: Research Data Management Support (2023). https://www.uu.nl/en/research/research-data-management/guides/policies-codes-of-conduct-and-laws. Accessed 12 July 2023
van Nederland, H.: Boeren kondigen ‘grootste demonstratie ooit’ aan op 11 maart in Den Haag, 8 February 2023. https://www.hartvannederland.nl/nieuws/politiek/boeren-kondigen-grootste-demonstratie-ooit-aan-op-11-maart-in-den-haag. Accessed 12 July 2023
VRT: Duizenden boeren protesteren in Den Haag tegen stikstofbeleid, 700 klimaatactivisten opgepakt na protestactie op snelweg, 11 March 2023. https://www.vrt.be/vrtnws/nl/2023/03/11/ondanks-verbod-trekken-tractoren-in-kolonne-naar-den-haag-voor-p/. Accessed 21 July 2023
Webb, H., et al.: The ethical challenges of publishing Twitter data for research dissemination. In: Proceedings of the 2017 ACM on Web Science Conference, pp. 339–348 (2017)
Wieringa, R.J.: Design Science Methodology for Information Systems and Software Engineering. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43839-8
Wijeratne, S., Balasuriya, L., Sheth, A., Doran, D.: EmojiNet: building a machine readable sense inventory for emoji. In: Spiro, E., Ahn, Y.-Y. (eds.) SocInfo 2016, Part I. LNCS, vol. 10046, pp. 527–541. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47880-7_33
Wijeratne, S., Balasuriya, L., Sheth, A., Doran, D.: EmojiNet: an open service and API for emoji sense discovery. In: Proceedings of the International AAAI Conference on Web and Social Media, vol. 11, pp. 437–446 (2017)
Yang, L., Sun, T., Zhang, M., Mei, Q.: We know what@ you# tag: does the dual role affect hashtag adoption? In: Proceedings of the 21st International Conference on World Wide Web, pp. 261–270 (2012)
Zaman, T.R., Herbrich, R., Van Gael, J., Stern, D.: Predicting information spreading in Twitter. In: Workshop on Computational Social Science and the Wisdom of Crowds, Nips, vol. 104, pp. 17599–601. Citeseer (2010)
Zhou, Y., Ai, W.: # Emoji: a study on the association between emojis and hashtags on Twitter. In: Proceedings of the International AAAI Conference on Web and Social Media, vol. 16, pp. 1169–1180 (2022)
Acknowledgments
This work was supported in part by the Dutch Police, who provided insights into their open-source intelligence work. Our gratitude goes especially to the OSINT team, who provided valuable insights into their activities.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Müter, L.H.F., Veltkamp, R.C. (2024). Analysing Protest-Related Tweets: An Evaluation of Techniques by the Open Source Intelligence Team. In: Arai, K. (eds) Advances in Information and Communication. FICC 2024. Lecture Notes in Networks and Systems, vol 920. Springer, Cham. https://doi.org/10.1007/978-3-031-53963-3_5
Download citation
DOI: https://doi.org/10.1007/978-3-031-53963-3_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-53962-6
Online ISBN: 978-3-031-53963-3
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)