Skip to main content

On Ensemble Learning for Mental Workload Classification

  • Conference paper
  • First Online:
Machine Learning, Optimization, and Data Science (LOD 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14506))

  • 157 Accesses

Abstract

The ability to determine a subject’s Mental Work Load (MWL) has a wide range of significant applications within modern working environments. In recent years, techniques such as Electroencephalography (EEG) have come to the forefront of MWL monitoring by extracting signals from the brain that correlate strongly to the workload of a subject. To effectively classify the MWL of a subject via their EEG data, prior works have employed machine and deep learning models. These studies have primarily utilised single-learner models to perform MWL classification. However, given the significance of accurately detecting a subject’s MWL for use in practical applications, steps should be taken to assess how we can increase the accuracy of these systems so that they are robust enough for use in real-world scenarios. Therefore, in this study, we investigate if the use of state-of-the-art ensemble learning strategies can improve performance over individual models. As such, we apply Bagging and Stacking ensemble techniques to the STEW dataset to classify “low”, “medium”, and “high” workload levels using EEG data. We also explore how different model compositions impact performance by modifying the type and quantity of models within each ensemble. The results from this study highlight that ensemble networks are capable of improving upon the accuracy of all their individual learner counterparts whilst reducing the variance of predictions, with our highest scoring model being a stacking BLSTM consisting of 8 learners, which achieved a classification accuracy of 97%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aghajani, H., Garbey, M., Omurtag, A.: Measuring mental workload with EEG+fNIRS. Front. Hum. Neurosci. 11, 359 (2017)

    Article  Google Scholar 

  2. Allegretti, M., Moshfeghi, Y., Hadjigeorgieva, M., Pollick, F.E., Jose, J.M., Pasi, G.: When relevance judgement is happening? An EEG-based study. In: Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 719–722 (2015)

    Google Scholar 

  3. Bratfisch, O., Hagman, E.: Simkap-simultankapazität/multi-tasking. Schuhfried GmbH, Mödling (2008)

    Google Scholar 

  4. Butmee, T., Lansdown, T.C., Walker, G.H.: Mental workload and performance measurements in driving task: a review literature. In: Bagnara, S., Tartaglia, R., Albolino, S., Alexander, T., Fujita, Y. (eds.) IEA 2018. AISC, vol. 823, pp. 286–294. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-96074-6_31

    Chapter  Google Scholar 

  5. Cain, B.: A review of the mental workload literature (2007)

    Google Scholar 

  6. Chakladar, D.D., Dey, S., Roy, P.P., Dogra, D.P.: EEG-based mental workload estimation using deep BLSTM-LSTM network and evolutionary algorithm. Biomed. Signal Process. Control 60, 101989 (2020)

    Article  Google Scholar 

  7. Charles, R.L., Nixon, J.: Measuring mental workload using physiological measures: a systematic review. Appl. Ergon. 74, 221–232 (2019)

    Article  Google Scholar 

  8. Chen, J., Jiang, D., Zhang, Y.: A hierarchical bidirectional GRU model with attention for EEG-based emotion classification. IEEE Access 7, 118530–118540 (2019)

    Article  Google Scholar 

  9. Dehais, F., Somon, B., Mullen, T., Callan, D.E.: A neuroergonomics approach to measure pilot’s cognitive incapacitation in the real world with EEG. In: Ayaz, H., Asgher, U. (eds.) AHFE 2020. AISC, vol. 1201, pp. 111–117. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-51041-1_16

    Chapter  Google Scholar 

  10. Deng, P.Y., et al.: Detecting fatigue status of pilots based on deep learning network using EEG signals. IEEE Trans. Cogn. Dev. Syst. 13(3), 575–585 (2020). https://doi.org/10.1109/TCDS.2019.2963476

    Article  Google Scholar 

  11. Gramfort, A., et al.: MEG and EEG data analysis with MNE-Python. Front. Neurosci. 267 (2013)

    Google Scholar 

  12. Hart, S.G.: NASA-task load index (NASA-TLX); 20 years later. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 50, pp. 904–908. Sage, Los Angeles (2006)

    Google Scholar 

  13. Henelius, A., Hirvonen, K., Holm, A., Korpela, J., Muller, K.: Mental workload classification using heart rate metrics. In: 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1836–1839. IEEE (2009)

    Google Scholar 

  14. Hofmann, T.: Collaborative filtering via Gaussian probabilistic latent semantic analysis. In: Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 259–266 (2003)

    Google Scholar 

  15. Hu, X., Lodewijks, G.: Detecting fatigue in car drivers and aircraft pilots by using non-invasive measures: the value of differentiation of sleepiness and mental fatigue. J. Safety Res. 72, 173–187 (2020). https://doi.org/10.1016/j.jsr.2019.12.015

    Article  Google Scholar 

  16. Islam, M.K., Rastegarnia, A., Yang, Z.: Methods for artifact detection and removal from scalp EEG: a review. Neurophysiologie Clinique/Clin. Neurophysiol. 46(4–5), 287–305 (2016)

    Article  Google Scholar 

  17. Jafari, M., Zaeri, F., Jafari, A., Najafabadi, A., Al-Qaisi, S., Hassanzadeh Rangi, N.: Assessment and monitoring of mental workload in subway train operations using physiological, subjective, and performance measures. Hum. Factors Ergon. Manuf. Serv. Ind. 30(3), 165–175 (2020). https://doi.org/10.1002/hfm.20831

    Article  Google Scholar 

  18. Kandemir, C., Handley, H.A.: Work process improvement through simulation optimization of task assignment and mental workload. Comput. Math. Organ. Theory 25, 389–427 (2019)

    Article  Google Scholar 

  19. Karameh, F.N., Dahleh, M.A.: Automated classification of EEG signals in brain tumor diagnostics. In: Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No. 00CH36334), vol. 6, pp. 4169–4173. IEEE (2000)

    Google Scholar 

  20. Kauppi, J.P., et al.: Towards brain-activity-controlled information retrieval: decoding image relevance from MEG signals. NeuroImage 112, 288–298 (2015)

    Article  Google Scholar 

  21. Kingphai, K., Moshfeghi, Y.: On EEG preprocessing role in deep learning effectiveness for mental workload classification. In: Longo, L., Leva, M.C. (eds.) H-WORKLOAD 2021. CCIS, vol. 1493, pp. 81–98. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-91408-0_6

    Chapter  Google Scholar 

  22. Kingphai, K., Moshfeghi, Y.: On time series cross-validation for deep learning classification model of mental workload levels based on EEG signals. In: Nicosia, G., et al. (eds.) LOD 2022. LNCS, vol. 13811, pp. 402–416. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-25891-6_30

    Chapter  Google Scholar 

  23. Lim, J., Wu, W.C., Wang, J., Detre, J.A., Dinges, D.F., Rao, H.: Imaging brain fatigue from sustained mental workload: an ASL perfusion study of the time-on-task effect. NeuroImage 49(4), 3426–3435 (2010)

    Article  Google Scholar 

  24. Lim, W.L., Sourina, O., Wang, L.P.: STEW: simultaneous task EEG workload data set. IEEE Trans. Neural Syst. Rehabil. Eng. 26(11), 2106–2114 (2018)

    Article  Google Scholar 

  25. Lim, W.L., Sourina, O., Liu, Y., Wang, L.: EEG-based mental workload recognition related to multitasking. In: 2015 10th International Conference on Information, Communications and Signal Processing (ICICS), pp. 1–4 (2015). https://doi.org/10.1109/ICICS.2015.7459834

  26. Midha, S., Maior, H.A., Wilson, M.L., Sharples, S.: Measuring mental workload variations in office work tasks using fNIRS. Int. J. Hum. Comput. Stud. 147, 102580 (2021)

    Article  Google Scholar 

  27. Moshfeghi, Y., Pinto, L.R., Pollick, F.E., Jose, J.M.: Understanding relevance: an fMRI study. In: Serdyukov, P., et al. (eds.) ECIR 2013. LNCS, vol. 7814, pp. 14–25. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36973-5_2

    Chapter  Google Scholar 

  28. Moshfeghi, Y., Triantafillou, P., Pollick, F.E.: Understanding information need: an fMRI study. In: Proceedings of the 39th International ACM SIGIR conference on Research and Development in Information Retrieval, SIGIR 2016, New York, NY, USA, pp. 335–344. Association for Computing Machinery (2016)

    Google Scholar 

  29. Orru, G., Gobbo, F., O’Sullivan, D., Longo, L.: An investigation of the impact of a social constructivist teaching approach, based on trigger questions, through measures of mental workload and efficiency. In: McLaren, B.M., Reilly, R., Zvacek, S., Uhomoibhi, J. (eds.) Proceedings of the 10th International Conference on Computer Supported Education, pp. 292–302. SciTePress - Science and Technology Publications (2018)

    Google Scholar 

  30. Pandey, V., Choudhary, D.K., Verma, V., Sharma, G., Singh, R., Chandra, S.: Mental workload estimation using EEG. In: 2020 Fifth International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN), pp. 83–86. IEEE (2020)

    Google Scholar 

  31. Paxion, J., Galy, E., Berthelon, C.: Mental workload and driving. Front. Psychol. 5 (2014). https://doi.org/10.3389/fpsyg.2014.01344

  32. Polikar, R.: Ensemble learning. In: Zhang, C., Ma, Y. (eds.) Ensemble Machine Learning: Methods and Applications, pp. 1–34. Springer, New York (2012). https://doi.org/10.1007/978-1-4419-9326-7_1

    Chapter  Google Scholar 

  33. Reid, G.B., Nygren, T.E.: The subjective workload assessment technique: a scaling procedure for measuring mental workload. In: Advances in Psychology, vol. 52, pp. 185–218. Elsevier (1988)

    Google Scholar 

  34. Singh, U., Ahirwal, M.K.: Mental workload classification for multitasking test using electroencephalogram signal. In: 2021 IEEE International Conference on Technology, Research, and Innovation for Betterment of Society (TRIBES), pp. 1–6 (2021). https://doi.org/10.1109/TRIBES52498.2021.9751676

  35. So, W.K., Wong, S.W., Mak, J.N., Chan, R.H.: An evaluation of mental workload with frontal EEG. PLoS ONE 12(4), e0174949 (2017)

    Article  Google Scholar 

  36. Tao, J., Yin, Z., Liu, L., Tian, Y., Sun, Z., Zhang, J.: Individual-specific classification of mental workload levels via an ensemble heterogeneous extreme learning machine for EEG modeling. Symmetry 11(7), 944 (2019)

    Article  Google Scholar 

  37. Teplan, M.: Fundamental of EEG measurement. Meas. Sci. Rev. 2, 1–11 (2002)

    Google Scholar 

  38. Tokuda, S., Obinata, G., Palmer, E., Chaparro, A.: Estimation of mental workload using saccadic eye movements in a free-viewing task. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 4523–4529. IEEE (2011)

    Google Scholar 

  39. Tzallas, A.T., Tsipouras, M.G., Fotiadis, D.I.: Epileptic seizure detection in EEGs using time-frequency analysis. IEEE Trans. Inf. Technol. Biomed. 13(5), 703–710 (2009)

    Article  Google Scholar 

  40. Urigüen, J.A., Garcia-Zapirain, B.: EEG artifact removal-state-of-the-art and guidelines. J. Neural Eng. 12(3), 031001 (2015)

    Article  Google Scholar 

  41. Vaid, S., Singh, P., Kaur, C.: EEG signal analysis for BCI interface: a review. In: 2015 Fifth International Conference on Advanced Computing & Communication Technologies, pp. 143–147. IEEE (2015)

    Google Scholar 

  42. Xie, B., Salvendy, G.: Prediction of mental workload in single and multiple tasks environments. Int. J. Cogn. Ergon. 4(3), 213–242 (2000)

    Article  Google Scholar 

  43. Yang, S., Yin, Z., Wang, Y., Zhang, W., Wang, Y., Zhang, J.: Assessing cognitive mental workload via EEG signals and an ensemble deep learning classifier based on denoising autoencoders. Comput. Biol. Med. 109, 159–170 (2019)

    Article  Google Scholar 

  44. Yin, Z., Zhang, J.: Cross-session classification of mental workload levels using EEG and an adaptive deep learning model. Biomed. Signal Process. Control 33, 30–47 (2017). https://doi.org/10.1016/j.bspc.2016.11.013

    Article  Google Scholar 

  45. Zarjam, P., Epps, J., Lovell, N.H.: Beyond subjective self-rating: EEG signal classification of cognitive workload. IEEE Trans. Auton. Ment. Dev. 7(4), 301–310 (2015)

    Article  Google Scholar 

  46. Zhang, C., Ma, Y.: Ensemble Machine Learning: Methods and Applications. Springer, New York (2012)

    Book  Google Scholar 

  47. Zhao, R., Yan, R., Wang, J., Mao, K.: Learning to monitor machine health with convolutional bi-directional LSTM networks. Sensors 17(2), 273 (2017)

    Article  Google Scholar 

  48. Zheng, X., Chen, W., You, Y., Jiang, Y., Li, M., Zhang, T.: Ensemble deep learning for automated visual classification using EEG signals. Pattern Recogn. 102, 107147 (2020). https://doi.org/10.1016/j.patcog.2019.107147

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niall McGuire .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

McGuire, N., Moshfeghi, Y. (2024). On Ensemble Learning for Mental Workload Classification. In: Nicosia, G., Ojha, V., La Malfa, E., La Malfa, G., Pardalos, P.M., Umeton, R. (eds) Machine Learning, Optimization, and Data Science. LOD 2023. Lecture Notes in Computer Science, vol 14506. Springer, Cham. https://doi.org/10.1007/978-3-031-53966-4_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53966-4_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53965-7

  • Online ISBN: 978-3-031-53966-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics