Skip to main content

On Channel Selection for EEG-Based Mental Workload Classification

  • Conference paper
  • First Online:
Machine Learning, Optimization, and Data Science (LOD 2023)

Abstract

Electroencephalogram (EEG) is a non-invasive technology with high temporal resolution, widely used in Brain-Computer Interfaces (BCIs) for mental workload (MWL) classification. However, numerous EEG channels in current devices can make them bulky, uncomfortable, and time-consuming to operate in real-life scenarios. A Riemannian geometry approach has gained attention for channel selection to address this issue. In particular, Riemannian geometry employs covariance matrices of EEG signals to identify the optimal set of EEG channels, given a specific covariance estimator and desired channel number. However, previous studies have not thoroughly assessed the limitations of various covariance estimators, which may influence the analysis results. In this study, we aim to investigate the impact of different covariance estimators, namely Empirical Covariance (EC), Shrunk Covariance (SC), Ledoit-Wolf (LW), and Oracle Approximating Shrinkage (OAS), along with the influence of channel numbers on the process of EEG channel selection. We also examine the performance of selected channels using diverse deep learning models, namely Stacked Gated Recurrent Unit (GRU), Bidirectional Gated Recurrent Unit (BGRU), and BGRU-GRU models, using a publicly available MWL EEG dataset. Our findings show that although no universally optimal channel number exists, employing as few as four channels can achieve an accuracy of 0.940 (±0.036), enhancing practicality for real-world applications. In addition, we discover that the BGRU model, when combined with OAS covariance estimators and a 32-channel configuration, demonstrates superior performance in MWL classification tasks compared to other estimator combinations. Indeed, this study provides insights into the effectiveness of various covariance estimators and the optimal channel subsets for highly accurate MWL classification. These findings can potentially advance the development of EEG-based BCI applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.neuroergonomicsconference.um.ifi.lmu.de/pbci/.

  2. 2.

    https://software.nasa.gov/software/LAR-17835-1.

References

  1. Alotaiby, T., El-Samie, F.E.A., Alshebeili, S.A., Ahmad, I.: A review of channel selection algorithms for EEG signal processing. EURASIP J. Adv. Signal Process. 2015, 1–21 (2015)

    Article  Google Scholar 

  2. Alyasseri, Z.A.A., Khader, A.T., Al-Betar, M.A., Alomari, O.A.: Person identification using EEG channel selection with hybrid flower pollination algorithm. Pattern Recogn. 105, 107393 (2020)

    Article  Google Scholar 

  3. Arvaneh, M., Guan, C., Ang, K.K., Quek, C.: Optimizing the channel selection and classification accuracy in EEG-based BCI. IEEE Trans. Biomed. Eng. 58(6), 1865–1873 (2011)

    Article  Google Scholar 

  4. Baig, M.Z., Aslam, N., Shum, H.P.: Filtering techniques for channel selection in motor imagery EEG applications: a survey. Artif. Intell. Rev. 53, 1207–1232 (2020)

    Article  Google Scholar 

  5. Baig, M.Z., Aslam, N., Shum, H.P., Zhang, L.: Differential evolution algorithm as a tool for optimal feature subset selection in motor imagery EEG. Expert Syst. Appl. 90, 184–195 (2017)

    Article  Google Scholar 

  6. Barachant, A., Bonnet, S.: Channel selection procedure using Riemannian distance for BCI applications. In: 2011 5th International IEEE/EMBS Conference on Neural Engineering, pp. 348–351. IEEE (2011)

    Google Scholar 

  7. Belakhdar, I., Kaaniche, W., Djemal, R., Ouni, B.: Single-channel-based automatic drowsiness detection architecture with a reduced number of EEG features. Microprocess. Microsyst. 58, 13–23 (2018)

    Article  Google Scholar 

  8. Borghini, G., Astolfi, L., Vecchiato, G., Mattia, D., Babiloni, F.: Measuring neurophysiological signals in aircraft pilots and car drivers for the assessment of mental workload, fatigue and drowsiness. Neurosci. Biobehav. Rev. 44, 58–75 (2014)

    Article  Google Scholar 

  9. Brouwer, A.M., Hogervorst, M.A., Van Erp, J.B., Heffelaar, T., Zimmerman, P.H., Oostenveld, R.: Estimating workload using EEG spectral power and ERPS in the n-back task. J. Neural Eng. 9(4), 045008 (2012)

    Article  Google Scholar 

  10. Chen, S., Sun, Y., Wang, H., Pang, Z.: Channel selection based similarity measurement for motor imagery classification. In: 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 542–548. IEEE (2020)

    Google Scholar 

  11. Herff, C., Heger, D., Fortmann, O., Hennrich, J., Putze, F., Schultz, T.: Mental workload during n-back task-quantified in the prefrontal cortex using fNIRS. Front. Hum. Neurosci. 7, 935 (2014)

    Article  Google Scholar 

  12. Hinss, M.F., et al.: An EEG dataset for cross-session mental workload estimation: passive BCI competition of the neuroergonomics conference 2021 (2021). https://doi.org/10.5281/zenodo.5055046. The project was validated by the local ethical committee of the University of Toulouse (CER number 2021-342)

  13. Islam, M.R., Barua, S., Ahmed, M.U., Begum, S., Di Flumeri, G.: Deep learning for automatic EEG feature extraction: an application in drivers’ mental workload classification. In: Longo, L., Leva, M.C. (eds.) H-WORKLOAD 2019. CCIS, vol. 1107, pp. 121–135. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32423-0_8

    Chapter  Google Scholar 

  14. Jin, J., Miao, Y., Daly, I., Zuo, C., Hu, D., Cichocki, A.: Correlation-based channel selection and regularized feature optimization for mi-based BCI. Neural Netw. 118, 262–270 (2019)

    Article  Google Scholar 

  15. Kingphai, K., Moshfeghi, Y.: On time series cross-validation for deep learning classification model of mental workload levels based on EEG signals. In: Nicosia, G., et al. (eds.) LOD 2022, Part II. LNCS, vol. 13811, pp. 402–416. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-25891-6_30

    Chapter  Google Scholar 

  16. Lachaux, J.P., Axmacher, N., Mormann, F., Halgren, E., Crone, N.E.: High-frequency neural activity and human cognition: past, present and possible future of intracranial EEG research. Prog. Neurobiol. 98(3), 279–301 (2012)

    Article  Google Scholar 

  17. Lan, T., Erdogmus, D., Adami, A., Pavel, M., Mathan, S.: Salient EEG channel selection in brain computer interfaces by mutual information maximization. In: 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, pp. 7064–7067. IEEE (2006)

    Google Scholar 

  18. Lim, C.G., et al.: A brain-computer interface based attention training program for treating attention deficit hyperactivity disorder. PLoS ONE 7(10), e46692 (2012)

    Article  Google Scholar 

  19. Lin, B.S., Huang, Y.K., Lin, B.S.: Design of smart EEG cap. Comput. Methods Programs Biomed. 178, 41–46 (2019)

    Article  Google Scholar 

  20. Miller, E.K., Cohen, J.D.: An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 24(1), 167–202 (2001)

    Article  Google Scholar 

  21. Mognon, A., Jovicich, J., Bruzzone, L., Buiatti, M.: ADJUST: an automatic EEG artifact detector based on the joint use of spatial and temporal features. Psychophysiology 48(2), 229–240 (2011)

    Article  Google Scholar 

  22. Mzurikwao, D., et al.: A channel selection approach based on convolutional neural network for multi-channel EEG motor imagery decoding. In: 2019 IEEE Second International Conference on Artificial Intelligence and Knowledge Engineering (AIKE), pp. 195–202. IEEE (2019)

    Google Scholar 

  23. Qu, T., Jin, J., Xu, R., Wang, X., Cichocki, A.: Riemannian distance based channel selection and feature extraction combining discriminative time-frequency bands and riemannian tangent space for mi-bcis. J. Neural Eng. 19(5), 056025 (2022)

    Article  Google Scholar 

  24. Roy, R.N., et al.: Retrospective on the first passive brain-computer interface competition on cross-session workload estimation. Front. Neuroergon. 3 (2022)

    Google Scholar 

  25. Roy, Y., Banville, H., Albuquerque, I., Gramfort, A., Falk, T.H., Faubert, J.: Deep learning-based electroencephalography analysis: a systematic review. J. Neural Eng. 16(5), 051001 (2019)

    Article  Google Scholar 

  26. Santiago-Espada, Y., Myer, R.R., Latorella, K.A., Comstock Jr., J.R.: The multi-attribute task battery II (MATB-II) software for human performance and workload research: a user’s guide. Technical report (2011)

    Google Scholar 

  27. Shen, J., et al.: An optimal channel selection for EEG-based depression detection via kernel-target alignment. IEEE J. Biomed. Health Inform. 25(7), 2545–2556 (2020)

    Article  MathSciNet  Google Scholar 

  28. Shi, B., Wang, Q., Yin, S., Yue, Z., Huai, Y., Wang, J.: A binary harmony search algorithm as channel selection method for motor imagery-based BCI. Neurocomputing 443, 12–25 (2021)

    Article  Google Scholar 

  29. Tanaka, M., Ishii, A., Watanabe, Y.: Neural effects of mental fatigue caused by continuous attention load: a magnetoencephalography study. Brain Res. 1561, 60–66 (2014)

    Article  Google Scholar 

  30. Varshney, A., Ghosh, S.K., Padhy, S., Tripathy, R.K., Acharya, U.R.: Automated classification of mental arithmetic tasks using recurrent neural network and entropy features obtained from multi-channel eeg signals. Electronics 10(9), 1079 (2021)

    Article  Google Scholar 

  31. Wang, Z.M., Hu, S.Y., Song, H.: Channel selection method for EEG emotion recognition using normalized mutual information. IEEE Access 7, 143303–143311 (2019)

    Article  Google Scholar 

  32. Yang, S., Yin, Z., Wang, Y., Zhang, W., Wang, Y., Zhang, J.: Assessing cognitive mental workload via EEG signals and an ensemble deep learning classifier based on denoising autoencoders. Comput. Biol. Med. 109, 159–170 (2019)

    Article  Google Scholar 

  33. Yin, Z., Zhang, J.: Cross-session classification of mental workload levels using EEG and an adaptive deep learning model. Biomed. Signal Process. Control 33, 30–47 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yashar Moshfeghi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kingphai, K., Moshfeghi, Y. (2024). On Channel Selection for EEG-Based Mental Workload Classification. In: Nicosia, G., Ojha, V., La Malfa, E., La Malfa, G., Pardalos, P.M., Umeton, R. (eds) Machine Learning, Optimization, and Data Science. LOD 2023. Lecture Notes in Computer Science, vol 14506. Springer, Cham. https://doi.org/10.1007/978-3-031-53966-4_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53966-4_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53965-7

  • Online ISBN: 978-3-031-53966-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics