Abstract
This work extends a previous work in regime detection, which allowed trading positions to be profitably adjusted when a new regime was detected, to ex ante prediction of regimes, leading to substantial performance improvements over the earlier model, over all three asset classes considered (equities, commodities, and foreign exchange), over a test period of four years. The proposed new model is also benchmarked over this same period against a hidden Markov model, the most popular current model for financial regime prediction, and against an appropriate index benchmark for each asset class, in the case of the commodities model having a test period cost-adjusted cumulative return over four times higher than that expected from the index. Notably, the proposed model makes use of a contrarian trading strategy, not uncommon in the financial industry but relatively unexplored in machine learning models. The model also makes use of frequent short positions, something not always desirable to investors due to issues of both financial risk and ethics; however, it is discussed how further work could remove this reliance on shorting and allow the construction of a long-only version of the model.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Notes
- 1.
https://github.com/bukosabino/ta. Last accessed 29 March 2023.
- 2.
https://scikit-learn.org/stable/. Last accessed 6 September 2022.
- 3.
https://www.kaggle.com/code/marketneutral/purged-time-series-cv-xgboost-optuna. Last accessed 12 July 2023.
- 4.
https://github.com/Ekeany/Boruta-Shap. Last accessed 5 April 2023.
References
Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: a next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2623–2631 (2019). https://doi.org/10.1145/3292500.3330701
Aldrich, J.H., Nelson, F.D.: Linear Probability, Logit, and Probit Models. Sage (1984)
Ballings, M., Van den Poel, D., Hespeels, N., Gryp, R.: Evaluating multiple classifiers for stock price direction prediction. Expert Syst. Appl. 42(20), 7046–7056 (2015). https://doi.org/10.1016/j.eswa.2015.05.013
Baum, L.E., Petrie, T.: Statistical inference for probabilistic functions of finite state Markov chains. Ann. Math. Stat. 37(6), 1554–1563 (1966). https://www.jstor.org/stable/2238772
Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). https://doi.org/10.1023/A:1010933404324
Chicco, D., Jurman, G.: The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genom. 21(1), 1–13 (2020). https://doi.org/10.1186/s12864-019-6413-7
Christ, M., Kempa-Liehr, A.W., Feindt, M.: Distributed and parallel time series feature extraction for industrial big data applications. arXiv preprint arXiv:1610.07717 (2016). https://doi.org/10.48550/arXiv.1610.07717
De Prado, M.L.: Advances in Financial Machine Learning. Wiley, Hoboken (2018)
Giudici, P., Abu Hashish, I.: A hidden Markov model to detect regime changes in cryptoasset markets. Qual. Reliab. Eng. Int. 36(6), 2057–2065 (2020). https://doi.org/10.1002/qre.2673
Hosking, J.: Fractional differencing. Biometrika 68, 165–175 (1981)
Israelsen, C.: A refinement to the Sharpe ratio and information ratio. J. Asset Manag. 5(6), 423–427 (2005). https://doi.org/10.1057/palgrave.jam.2240158
Kaufman, P.: Smarter Trading: Improving Performance in Changing Markets. McGraw-Hill, New York (1995)
Krolzig, H.: Markov-Switching Vector Autoregressions: Modelling, Statistical Inference, and Application to Business Cycle Analysis. Springer, New York (1997). https://doi.org/10.1007/978-3-642-51684-9
Kursa, M.B., Rudnicki, W.R.: Feature selection with the Boruta package. J. Stat. Softw. 36, 1–13 (2010). https://doi.org/10.18637/jss.v036.i11
Lee, Y., Ow, L.T.C., Ling, D.N.C.: Hidden Markov models for forex trends prediction. In: 2014 International Conference on Information Science & Applications (ICISA), pp. 1–4. IEEE (2014). https://doi.org/10.1109/ICISA.2014.6847408
Lo, A.W., MacKinlay, A.C.: A Non-random Walk Down Wall Street. Princeton University Press, Princeton (2011)
Matthews, B.W.: Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim. Biophys. Acta (BBA)-Protein Struct. 405(2), 442–451 (1975). https://doi.org/10.1016/0005-2795(75)90109-9
Milosevic, N.: Equity forecast: predicting long term stock price movement using machine learning. arXiv preprint arXiv:1603.00751 (2016). https://doi.org/10.48550/arXiv.1603.00751
Pavlov, V., Hurn, S.: Testing the profitability of moving-average rules as a portfolio selection strategy. Pac. Basin Financ. J. 20(5), 825–842 (2012). https://doi.org/10.1016/j.pacfin.2012.04.003
Piger, J.: Turning points and classification. In: Fuleky, P. (ed.) Macroeconomic Forecasting in the Era of Big Data. ASTAE, vol. 52, pp. 585–624. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-31150-6_18
Pomorski, P.: Features and assets used in this work (2023). https://figshare.com/articles/conference_contribution/LOD2023_appendix/23681205
Pomorski, P., Gorse, D.: Improving on the Markov-switching regression model by the use of an adaptive moving average. In: Gartner, W.C. (ed.) New Perspectives and Paradigms in Applied Economics and Business. Springer Proceedings in Business and Economics, pp. 17–30. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-23844-4_2
Shapley, L.S., et al.: A Value for N-Person Games (1953)
e Silva, E.G.D.S., Legey, L.F.L., e Silva, E.A.D.S.: Forecasting oil price trends using wavelets and hidden Markov models. Energy Econ. 32(6), 1507–1519 (2010). https://doi.org/10.1016/j.eneco.2010.08.006
Strobl, C., Boulesteix, A.L., Zeileis, A., Hothorn, T.: Bias in random forest variable importance measures: illustrations, sources and a solution. BMC Bioinform. 8(1), 1–21 (2007). https://doi.org/10.1186/1471-2105-8-25
Uysal, A.S., Mulvey, J.M.: A machine learning approach in regime-switching risk parity portfolios. J. Financ. Data Sci. 3(2), 87–108 (2021). https://doi.org/10.3905/jfds.2021.1.057
Vrontos, S.D., Galakis, J., Vrontos, I.D.: Modeling and predicting US recessions using machine learning techniques. Int. J. Forecast. 37(2), 647–671 (2021). https://doi.org/10.1016/j.ijforecast.2020.08.005
Ward, F.: Spotting the danger zone: forecasting financial crises with classification tree ensembles and many predictors. J. Appl. Economet. 32(2), 359–378 (2017). https://doi.org/10.1002/jae.2525
Yazdani, A.: Machine learning prediction of recessions: an imbalanced classification approach. J. Financ. Data Sci. 2(4), 21–32 (2020). https://doi.org/10.3905/jfds.2020.1.040
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Pomorski, P., Gorse, D. (2024). Improving Portfolio Performance Using a Novel Method for Predicting Financial Regimes. In: Nicosia, G., Ojha, V., La Malfa, E., La Malfa, G., Pardalos, P.M., Umeton, R. (eds) Machine Learning, Optimization, and Data Science. LOD 2023. Lecture Notes in Computer Science, vol 14506. Springer, Cham. https://doi.org/10.1007/978-3-031-53966-4_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-53966-4_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-53965-7
Online ISBN: 978-3-031-53966-4
eBook Packages: Computer ScienceComputer Science (R0)