Skip to main content

ProVolOne – Protein Volume Prediction Using a Multi-attention, Multi-resolution Deep Neural Network and Finite Element Analysis

  • Conference paper
  • First Online:
Machine Learning, Optimization, and Data Science (LOD 2023)

Abstract

Protein structural properties are often determined by experimental techniques such as X-ray crystallography and nuclear magnetic resonance. However, both approaches are time-consuming and expensive. Conversely, protein amino acid sequences may be readily obtained from inexpensive high-throughput techniques, although such sequences lack structural information, which is essential for numerous applications such as gene therapy, in which maximisation of the payload, or volume, is required. This paper proposes a novel solution to volume prediction, based on deep learning and finite element analysis. We introduce a multi-attention, multi-resolution deep learning architecture that predicts protein volumes from their amino acid sequences. Experimental results demonstrate the efficiency of the ProVolOne framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adams, P.D., et al.: Announcing mandatory submission of PDBx/mmCIF format files for crystallographic depositions to the Protein Data Bank (PDB). Acta Crystallogr. Sect. D 75(4), 451–454 (2019)

    Google Scholar 

  2. Aslanidi, G., et al.: Optimization of the capsid of recombinant adeno-associated virus 2 (aav2) vectors: the final threshold? PLoS One 8(3) (2013). https://doi.org/10.1371/journal.pone.0059142

  3. Burley, S., et al.: RCSB protein data bank: powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. Nucleic Acids Res. 49(1), D437–D451 (2021). https://doi.org/10.1093/nar/gkaa1038

    Article  Google Scholar 

  4. Bylaklak, K., Charles, A.G.: The once and future gene therapy. Nat. Commun. 11, 1–4 (2020)

    Google Scholar 

  5. Celik, R.: RCEV heteroscedasticity test based on the studentized residuals. Commun. Stat. Theory Methods 48(13), 3258–268 (2019)

    Article  MathSciNet  Google Scholar 

  6. Chandra, A.A., Sharma, A., Dehganzi, A., Tsunoda, T.: Evolstruct-phogly: incorporating structural properties and evolutionary information from profile bigrams for the phos-phoglycerylation prediction. BMC Genomics 984–992 (2019)

    Google Scholar 

  7. Chung, T.J.: Computational Fluid Dynamics. Cambridge University Press, Cambridge, UK (2010)

    Book  Google Scholar 

  8. Gelman, A., Carlin, J.B., Stern, H.S., Dunson, D.B., Vehtari, A., Rubin, D.B.: Bayesian Data Analysis. CRC Press, Boca Raton, FL (2013)

    Book  Google Scholar 

  9. Gu, J., et al.: Recent advances in convolutional neural networks. Pattern Recogn. 77, 354–377 (2018)

    Article  Google Scholar 

  10. Jumper, J., et al.: Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021)

    Article  Google Scholar 

  11. Kingma, D., Ba, J.: Adam: a method for stochastic optimization, December 2014. ArXiv: 1412.6980

  12. Kuhlman, B., Bradley, P.: Advances in protein structure prediction and design. Nature 20, 681–697 (2019)

    Google Scholar 

  13. Li, H., Xu, Z., Taylor, G., Studer, C., Goldstein, T.: Visualizing the loss land-scape of neural nets. In: 32nd Conference on Neural In-formation Processing Systems, p. 11, Montréal, Canada, December 2018

    Google Scholar 

  14. Lill, M.A., Danielson, M.L.: Computer-aided drug design platform using PyMOL. J. Comput. Aided Mol. Des. 25, 13–19 (2011)

    Article  Google Scholar 

  15. Lin, Z., et al.: Language models of protein sequences at the scale of evolution enable accurate structure prediction. BioRxiv 2022.07.20.500902 (October 2022)

    Google Scholar 

  16. Lovric, J.: Introducing Proteomics: From Concepts to Sample Separation, Mass Spectrometry and Data Analysis. John Wiley & Sons, Oxford, UK (2011)

    Google Scholar 

  17. Pang, G., Shen, C., Cao, L.: Deep learning for anomaly detection: a review. ACM Comput. Surv. 54((2)38), 1–38 (2022)

    Google Scholar 

  18. Rodríguez, P., Bautista, M.A., Gonzàlez, J., Escalera, S.: Beyond one-hot encoding: Lower dimensional target embedding. Image Vis. Comput. 75, 21–31 (2018)

    Article  Google Scholar 

  19. Vaswani, A., et al.: Attention is all you need. In: 31st Conference on Neural Information Processing Systems (Neurips 2017), December 2017

    Google Scholar 

  20. Xu, D., Zhang, Y.: Generating triangulated macromolecular surfaces by Euclidean distance transform. PLoS ONE 4(12) (2009)

    Google Scholar 

  21. Zienkiewicz, O.C., Taylor, R.L., Fox, D.D.: The Finite Element Method for Solid and Structural Mechanics. Elsevier, London, UK (2013)

    Google Scholar 

Download references

Acknowledgements

This research was funded by the Artificial Intelligence For Design (AI4Design) Challenge Program from the Digital Technologies Research Centre of the National Research Council (NRC) of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Paquet .

Editor information

Editors and Affiliations

Appendix

Appendix

Fig. 13.
figure 13

Architecture of the deep neural network.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Paquet, E., Viktor, H., Michalowski, W., St-Pierre-Lemieux, G. (2024). ProVolOne – Protein Volume Prediction Using a Multi-attention, Multi-resolution Deep Neural Network and Finite Element Analysis. In: Nicosia, G., Ojha, V., La Malfa, E., La Malfa, G., Pardalos, P.M., Umeton, R. (eds) Machine Learning, Optimization, and Data Science. LOD 2023. Lecture Notes in Computer Science, vol 14505. Springer, Cham. https://doi.org/10.1007/978-3-031-53969-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53969-5_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53968-8

  • Online ISBN: 978-3-031-53969-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics