Skip to main content

U-FLEX: Unsupervised Feature Learning with Evolutionary eXploration

  • Conference paper
  • First Online:
Machine Learning, Optimization, and Data Science (LOD 2023)

Abstract

Feature selection is an essential task in machine learning and data mining that involves identifying a subset of relevant features from a larger set. This paper proposes a novel technique for unsupervised feature selection based on a Neural Network in conjunction with an evolutionary algorithm. The proposed method aims to extract subsets of the most discriminative and relevant features from high-dimensional data, which can be eventually used for efficient and accurate machine learning. An evolutionary algorithm is employed to generate the feature subsets, and the goodness of a feature subset is evaluated through the ability of a neural network to reconstruct the whole original input space by mean squared error minimization (in an auto-encoder fashion). Experimental results demonstrate the effectiveness of the proposed approach in finding relevant feature subsets for successive learning tasks, achieving better classification and regression accuracy compared to state-of-the-art feature selection methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Promising results were also found on an industrial classified dataset for regression: the computed nRMSE on all the features was 1.83%. With Pearson filter methods, 2.5% of the features were selected, with a nRMSE of 1.86%. The wrapper-supervised approach selected the 33% of features, with an error of 1.37%. Our approach converged to 19% of the features, with 1.38% of nRMSE.

References

  1. Abualigah, L., Khader, A.T., Al-Betar, M.: Unsupervised feature selection technique based on genetic algorithm for improving the text clustering, pp. 1–6, July 2016. https://doi.org/10.1109/CSIT.2016.7549453

  2. Altarabichi, M.G., Nowaczyk, S., Pashami, S., Mashhadi, P.S.: Fast genetic algorithm for feature selection - a qualitative approximation approach. Expert Syst. Appl. 118528 (2023). https://doi.org/10.1016/j.eswa.2022.118528. https://www.sciencedirect.com/science/article/pii/S0957417422016049

  3. Arenas, R.: sklearn-genetic-opt (2023). https://github.com/rodrigo-arenas/Sklearn-genetic-opt

  4. Barbiero, P., Lutton, E., Squillero, G., Tonda, A.: A novel outlook on feature selection as a multi-objective problem. In: Idoumghar, L., Legrand, P., Liefooghe, A., Lutton, E., Monmarché, N., Schoenauer, M. (eds.) EA 2019. LNCS, vol. 12052, pp. 68–81. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45715-0_6

    Chapter  Google Scholar 

  5. Barbiero, P., Squillero, G., Tonda, A.: Predictable features elimination: an unsupervised approach to feature selection. In: Nicosia, G., et al. (eds.) LOD 2021. LNCS, vol. 13163, pp. 399–412. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-95467-3_29

    Chapter  Google Scholar 

  6. Bertin-Mahieux, T., Ellis, D.P., Whitman, B., Lamere, P.: The million song dataset. In: Proceedings of the 12th International Conference on Music Information Retrieval (ISMIR 2011) (2011)

    Google Scholar 

  7. Boutegrabet, W., Piot, O., Guenot, D., Gobinet, C.: Unsupervised feature selection by a genetic algorithm for mid-infrared spectral data. Anal. Chem. 94(46), 16050–16059 (2022). https://doi.org/10.1021/acs.analchem.2c03118. pMID: 36346912

  8. De Stefano, C., Fontanella, F., Scotto di Freca, A.: Feature selection in high dimensional data by a filter-based genetic algorithm. In: Squillero, G., Sim, K. (eds.) EvoApplications 2017. LNCS, vol. 10199, pp. 506–521. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55849-3_33

    Chapter  Google Scholar 

  9. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing, 2nd edn. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-44874-8

    Book  Google Scholar 

  10. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016). http://www.deeplearningbook.org

  11. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003)

    Google Scholar 

  12. Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classification using support vector machines. Mach. Learn. 46, 389–422 (2002). https://doi.org/10.1023/A:1012487302797

    Article  Google Scholar 

  13. Guyon, I.M.: Design of experiments for the NIPS 2003 variable selection benchmark (2003)

    Google Scholar 

  14. Harris, C.R., et al.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2

    Article  Google Scholar 

  15. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, New York (2009). https://doi.org/10.1007/978-0-387-84858-7

    Book  Google Scholar 

  16. Heiss-Czedik, D.: An introduction to genetic algorithms. Artif. Life 3, 63–65 (1997)

    Article  Google Scholar 

  17. Jolliffe, I.T.: Principal Component Analysis. Springer, New York (2011)

    Google Scholar 

  18. Martin-Bautista, M., Vila, M.A.: A survey of genetic feature selection in mining issues. In: Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), vol. 2, pp. 1314–1321 (1999). https://doi.org/10.1109/CEC.1999.782599

  19. McKinney, W.: Data structures for statistical computing in Python. In: van der Walt, S., Millman, J. (eds.) Proceedings of the 9th Python in Science Conference, pp. 56–61 (2010). https://doi.org/10.25080/Majora-92bf1922-00a

  20. Miao, J., Niu, L.: A survey on feature selection. Procedia Comput. Sci. 91, 919–926 (2016). https://doi.org/10.1016/j.procs.2016.07.111. https://www.sciencedirect.com/science/article/pii/S1877050916313047. Promoting Business Analytics and Quantitative Management of Technology: 4th International Conference on Information Technology and Quantitative Management (ITQM 2016)

  21. Mitchell, M.: An Introduction to Genetic Algorithms (1996)

    Google Scholar 

  22. Mitchell, M.: An Introduction to Genetic Algorithms. Complex Adaptive Systems, 7th edn. Cambridge (2001)

    Google Scholar 

  23. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc. (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

  24. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  Google Scholar 

  25. Pudjihartono, N., Fadason, T., Kempa-Liehr, A.W., O’Sullivan, J.M.: A review of feature selection methods for machine learning-based disease risk prediction. Front. Bioinform. (2022). https://doi.org/10.3389/fbinf.2022.927312. https://www.frontiersin.org/articles/10.3389/fbinf.2022.927312

  26. Solorio-Fernández, S., Carrasco-Ochoa, J., Martínez-Trinidad, J.F.: A review of unsupervised feature selection methods. Artif. Intell. Rev. 53 (2020). https://doi.org/10.1007/s10462-019-09682-y

  27. The Pandas Development Team: Pandas-dev/pandas: Pandas, February 2020. https://doi.org/10.5281/zenodo.3509134

  28. Xie, J., Wang, M., Xu, S., Huang, Z., Grant, P.W.: The unsupervised feature selection algorithms based on standard deviation and cosine similarity for genomic data analysis. Front. Gen. 12 (2021). https://doi.org/10.3389/fgene.2021.684100. https://www.frontiersin.org/articles/10.3389/fgene.2021.684100

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolo’ Bellarmino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bellarmino, N., Cantoro, R., Squillero, G. (2024). U-FLEX: Unsupervised Feature Learning with Evolutionary eXploration. In: Nicosia, G., Ojha, V., La Malfa, E., La Malfa, G., Pardalos, P.M., Umeton, R. (eds) Machine Learning, Optimization, and Data Science. LOD 2023. Lecture Notes in Computer Science, vol 14505. Springer, Cham. https://doi.org/10.1007/978-3-031-53969-5_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53969-5_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53968-8

  • Online ISBN: 978-3-031-53969-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics