Skip to main content

Deep Active Learning with Concept Drifts for Detection of Mercury’s Bow Shock and Magnetopause Crossings

  • Conference paper
  • First Online:
Machine Learning, Optimization, and Data Science (LOD 2023)

Abstract

Active learning has shown great potential for improving the efficiency of data annotation in scientific applications. In the field of planetary science, where large volumes of data are generated by remote sensing instruments, active learning can significantly reduce the cost and time required for data analysis. However, existing active learning (AL) methods for planetary science applications do not consider the potential for drifts in the data distribution, which can lead to model degradation over time. To address this issue, we propose a drift detection-based active learning approach for planetary science applications. The proposed approach uses a semi-supervised generative adversarial network (GAN) to detect concept drifts and an entropy-based AL sampling procedure to select the most informative orbits from each for training. We test this approach on the use case of detecting bow shock and magnetopause boundaries around Mercury, utilising data obtained from NASA’s MESSENGER mission. Our key results indicate that by employing our approach, a near-maximal information gain can be obtained by training with less than 10% of the available data, surpassing the simpler entropy-based active learning. This approach has the potential to accelerate scientific discoveries in planetary science and other scientific domains that deal with large volumes of remote sensing data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amiriparian, S., et al.: Recognition of echolalic autistic child vocalisations utilising convolutional recurrent neural networks (2018)

    Google Scholar 

  2. Amiriparian, S., Cummins, N., Julka, S., Schuller, B.: Deep convolutional recurrent neural network for rare acoustic event detection. In: Proceedings of the DAGA, pp. 1522–1525 (2018)

    Google Scholar 

  3. Anderson, B., Johnson, C.: A magnetic disturbance index for mercury’s magnetic field derived from messenger magnetometer data. Geochem. Geophys. Geosyst. 14, 3875–3886 (2013). https://doi.org/10.1002/ggge.20242

    Article  Google Scholar 

  4. Baena-García, M., Campo-Ávila, J., Fidalgo-Merino, R., Bifet, A., Gavald, R., Morales-Bueno, R.: Early drift detection method, January 2006

    Google Scholar 

  5. Benkhoff, J., et al.: BepiColombo-comprehensive exploration of mercury: mission overview and science goals. Planet. Space Sci. 58(1–2), 2–20 (2010)

    Article  Google Scholar 

  6. Bifet, A., Gavaldà, R.: Learning from time-changing data with adaptive windowing, vol. 7, April 2007. https://doi.org/10.1137/1.9781611972771.42

  7. Fairfield, D.H.: Average and unusual locations of the earth’s magnetopause and bow shock. J. Geophys. Res. 76(28), 6700–6716 (1971)

    Article  Google Scholar 

  8. Fellicious, C., Wendlinger, L., Granitzer, M.: Neural network based drift detection. In: Nicosia, G., et al. (eds.) LOD 2022. LNCS, vol. 13810, pp. 370–383. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-25599-1_28

    Chapter  Google Scholar 

  9. Gemaque, R.N., Costa, A.F.J., Giusti, R., Dos Santos, E.M.: An overview of unsupervised drift detection methods. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 10(6), e1381 (2020)

    Article  Google Scholar 

  10. Gözüaçık, Ö., Büyükçakır, A., Bonab, H., Can, F.: Unsupervised concept drift detection with a discriminative classifier. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, pp. 2365–2368 (2019)

    Google Scholar 

  11. Gözüaçık, Ö., Can, F.: Concept learning using one-class classifiers for implicit drift detection in evolving data streams. Artif. Intell. Rev. 54, 3725–3747 (2021)

    Article  Google Scholar 

  12. Haaland, S., et al.: Characteristics of the flank magnetopause: MMS results. J. Geophys. Res. Space Phys. 125(3), e2019JA027623 (2020)

    Article  Google Scholar 

  13. Hu, H., Kantardzic, M., Sethi, T.S.: No free lunch theorem for concept drift detection in streaming data classification: a review. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 10(2), e1327 (2020)

    Article  Google Scholar 

  14. Jelínek, K., Němeček, Z., Šafránková, J.: A new approach to magnetopause and bow shock modeling based on automated region identification. J. Geophys. Res. Space Phys. 117(A5) (2012)

    Google Scholar 

  15. Julka, S., Kirschstein, N., Granitzer, M., Lavrukhin, A., Amerstorfer, U.: Deep active learning for detection of mercury’s bow shock and magnetopause crossings. In: Amini, M.R., Canu, S., Fischer, A., Guns, T., Kralj Novak, P., Tsoumakas, G. (eds.) ECML PKDD 2022. LNCS, vol. 13716. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-26412-2_28

    Chapter  Google Scholar 

  16. Justel, A., Peña, D., Zamar, R.: A multivariate Kolmogorov-Smirnov test of goodness of fit. Stat. Probab. Lett. 35(3), 251–259 (1997)

    Article  MathSciNet  Google Scholar 

  17. Ksieniewicz, P., Zyblewski, P., Choraś, M., Kozik, R., Giełczyk, A., Woźniak, M.: Fake news detection from data streams. In: 2020 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2020)

    Google Scholar 

  18. Lao, Q., Jiang, X., Havaei, M., Bengio, Y.: Continuous domain adaptation with variational domain-agnostic feature replay. arXiv preprint arXiv:2003.04382 (2020)

  19. Lin, R., Zhang, X., Liu, S., Wang, Y., Gong, J.: A three-dimensional asymmetric magnetopause model. J. Geophys. Res. Space Phys. 115(A4) (2010)

    Google Scholar 

  20. Lu, J., Liu, A., Dong, F., Gu, F., Gama, J., Zhang, G.: Learning under concept drift: a review. IEEE Trans. Knowl. Data Eng. 31(12), 2346–2363 (2018)

    Google Scholar 

  21. Nguyen, G., Aunai, N., Michotte de Welle, B., Jeandet, A., Fontaine, D.: Automatic detection of the earth bow shock and magnetopause from in-situ data with machine learning. Ann. Geophys. Discuss. 1–22 (2019)

    Google Scholar 

  22. Nikolaou, N., et al.: Lessons learned from the 1st ariel machine learning challenge: correcting transiting exoplanet light curves for stellar spots. arXiv preprint arXiv:2010.15996 (2020)

  23. Philpott, L.C., Johnson, C.L., Anderson, B.J., Winslow, R.M.: The shape of mercury’s magnetopause: the picture from messenger magnetometer observations and future prospects for bepicolombo. J. Geophys. Res. Space Phys. 125(5), e2019JA027544 (2020)

    Article  Google Scholar 

  24. Slavin, J.A.: Mercury’s magnetosphere. Adv. Space Res. 33(11), 1859–1874 (2004)

    Article  Google Scholar 

  25. Sundberg, T., et al.: Cyclic reformation of a quasi-parallel bow shock at mercury: MESSENGER observations. J. Geophys. Res. Space Phys. 118, 6457–6464 (2013). https://doi.org/10.1002/jgra.50602

    Article  Google Scholar 

  26. Suprem, A., Arulraj, J., Pu, C., Ferreira, J.: Odin: automated drift detection and recovery in video analytics. arXiv preprint arXiv:2009.05440 (2020)

  27. Wang, Y., et al.: A new three-dimensional magnetopause model with a support vector regression machine and a large database of multiple spacecraft observations. J. Geophys. Res. Space Phys. 118(5), 2173–2184 (2013)

    Article  Google Scholar 

  28. Widmer, G., Kubat, M.: Learning in the presence of concept drift and hidden contexts. Mach. Learn. 23(1), 69–101 (1996)

    Article  Google Scholar 

  29. Winslow, R.M., et al.: Mercury’s magnetopause and bow shock from messenger magnetometer observations. J. Geophys. Res. Space Phys. 118(5), 2213–2227 (2013)

    Article  Google Scholar 

  30. Zhong, J., et al.: Mercury’s three-dimensional asymmetric magnetopause. J. Geophys. Res. Space Phys. 120(9), 7658–7671 (2015)

    Article  Google Scholar 

  31. Zurbuchen, T.H., et al.: Messenger observations of the spatial distribution of planetary ions near mercury. Science 333(6051), 1862–1865 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from Europlanet 2024 RI that has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 871149. The authors also acknowledge the support of Christofer Fellicious for discussions and the development of the drift detection method.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sahib Julka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Julka, S., Ishmukhametov, R., Granitzer, M. (2024). Deep Active Learning with Concept Drifts for Detection of Mercury’s Bow Shock and Magnetopause Crossings. In: Nicosia, G., Ojha, V., La Malfa, E., La Malfa, G., Pardalos, P.M., Umeton, R. (eds) Machine Learning, Optimization, and Data Science. LOD 2023. Lecture Notes in Computer Science, vol 14505. Springer, Cham. https://doi.org/10.1007/978-3-031-53969-5_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53969-5_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53968-8

  • Online ISBN: 978-3-031-53969-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics