Skip to main content

Perceptrons Under Verifiable Random Data Corruption

  • Conference paper
  • First Online:
Machine Learning, Optimization, and Data Science (LOD 2023)

Abstract

We study perceptrons when datasets are randomly corrupted by noise and subsequently such corrupted examples are discarded from the training process. Overall, perceptrons appear to be remarkably stable; their accuracy drops slightly when large portions of the original datasets have been excluded from training as a response to verifiable random data corruption. Furthermore, we identify a real-world dataset where it appears to be the case that perceptrons require longer time for training, both in the general case, as well as in the framework that we consider. Finally, we explore empirically a bound on the learning rate of Gallant’s “pocket” algorithm for learning perceptrons and observe that the bound is tighter for non-linearly separable datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Homepage: https://archive.ics.uci.edu.

References

  1. Barocas, S., Hardt, M., Narayanan, A.: Fairness and machine learning: limitations and opportunities. fairmlbook.org (2019). http://www.fairmlbook.org

  2. Baum, E.: The perceptron algorithm is fast for non-malicious distributions. In: NeurIPS 1989, vol. 2, pp. 676–685. Morgan-Kaufmann (1989)

    Google Scholar 

  3. Biggio, B., Nelson, B., Laskov, P.: Poisoning attacks against support vector machines. In: ICML 2012. icml.cc/Omnipress (2012)

    Google Scholar 

  4. Brown, T.B., et al.: Language models are few-shot learners. In: NeurIPS 2020, Virtual (2020)

    Google Scholar 

  5. Quiñonero Candela, J., Sugiyama, M., Schwaighofer, A., Lawrence, N.D.: Dataset Shift in Machine Learning. The MIT Press, Cambridge (2008)

    Book  Google Scholar 

  6. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

    Article  Google Scholar 

  7. Dekel, O., Shamir, O., Xiao, L.: Learning to classify with missing and corrupted features. Mach. Learn. 81(2), 149–178 (2010)

    Article  MathSciNet  Google Scholar 

  8. Diochnos, D.I., Trafalis, T.B.: Learning reliable rules under class imbalance. In: SDM, pp. 28–36. SIAM (2021)

    Google Scholar 

  9. Fellicious, C., Weißgerber, T., Granitzer, M.: Effects of random seeds on the accuracy of convolutional neural networks. In: LOD 2020, Revised Selected Papers, Part II. LNCS, vol. 12566, pp. 93–102. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-030-64580-9_8

  10. Flansburg, C., Diochnos, D.I.: Wind prediction under random data corruption (student abstract). In: AAAI 2022, pp. 12945–12946. AAAI Press (2022)

    Google Scholar 

  11. Gallant, S.I.: Perceptron-based learning algorithms. IEEE Trans. Neural Netw. 1(2), 179–191 (1990)

    Article  Google Scholar 

  12. García-Laencina, P.J., Sancho-Gómez, J., Figueiras-Vidal, A.R.: Pattern classification with missing data: a review. Neural Comput. Appl. 19(2), 263–282 (2010)

    Article  Google Scholar 

  13. Goldblum, M., et al.: Dataset security for machine learning: data poisoning, backdoor attacks, and defenses. IEEE Trans. Pattern Anal. Mach. Intell. 45(2), 1563–1580 (2023)

    Article  Google Scholar 

  14. Goodfellow, I.J., McDaniel, P.D., Papernot, N.: Making machine learning robust against adversarial inputs. Commun. ACM 61(7), 56–66 (2018)

    Article  Google Scholar 

  15. He, H., Garcia, E.A.: Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21(9), 1263–1284 (2009)

    Article  Google Scholar 

  16. Impagliazzo, R., Lei, R., Pitassi, T., Sorrell, J.: Reproducibility in learning. In: STOC 2022, pp. 818–831. ACM (2022)

    Google Scholar 

  17. Kearns, M.J., Li, M.: Learning in the presence of malicious errors. SIAM J. Comput. 22(4), 807–837 (1993)

    Article  MathSciNet  Google Scholar 

  18. Koh, P.W., Liang, P.: Understanding black-box predictions via influence functions. In: ICML 2017. Proceedings of Machine Learning Research, vol. 70, pp. 1885–1894. PMLR (2017)

    Google Scholar 

  19. Koh, P.W., Steinhardt, J., Liang, P.: Stronger data poisoning attacks break data sanitization defenses. Mach. Learn. 111(1), 1–47 (2022)

    Article  MathSciNet  Google Scholar 

  20. Krishnaswamy, A.K., Li, H., Rein, D., Zhang, H., Conitzer, V.: Classification with strategically withheld data. In: AAAI 2021, pp. 5514–5522. AAAI Press (2021)

    Google Scholar 

  21. Laird, P.D.: Learning from Good and Bad Data, vol. 47. Springer, Heidelberg (2012). https://doi.org/10.1007/978-1-4613-1685-5

    Book  Google Scholar 

  22. Marcus, G.: Hoping for the best as AI evolves. Commun. ACM 66(4), 6–7 (2023). https://doi.org/10.1145/3583078

    Article  Google Scholar 

  23. Molnar, C.: Interpretable Machine Learning, 2 edn. Independently Published, Chappaqua (2022). https://christophm.github.io/interpretable-ml-book

  24. Rosenblatt, F.: Principles of Neurodynamics. Spartan Books, New York (1962)

    Google Scholar 

  25. Rudin, C.: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 1(5), 206–215 (2019)

    Article  Google Scholar 

  26. Shafahi, A., et al.: Poison frogs! targeted clean-label poisoning attacks on neural networks. In: NeurIPS 2018, pp. 6106–6116 (2018)

    Google Scholar 

  27. Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning - From Theory to Algorithms. Cambridge University Press, Cambridge (2014)

    Book  Google Scholar 

  28. Valiant, L.G.: A theory of the learnable. Commun. ACM 27(11), 1134–1142 (1984)

    Article  Google Scholar 

  29. Varshney, K.R.: Trustworthy Machine Learning. Independently Published, Chappaqua (2022)

    Google Scholar 

  30. Vorobeychik, Y., Kantarcioglu, M.: Adversarial machine learning. In: Synthesis Lectures on Artificial Intelligence and Machine Learning, # 38. Morgan & Claypool, San Rafael (2018)

    Google Scholar 

Download references

Acknowledgements

Part of the work was performed at the OU Supercomputing Center for Education & Research (OSCER) at the University of Oklahoma. The work was supported by the second author’s startup fund. The first author worked on this topic while he was an undergraduate McNair Sholar.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jose E. Aguilar Escamilla or Dimitrios I. Diochnos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Escamilla, J.E.A., Diochnos, D.I. (2024). Perceptrons Under Verifiable Random Data Corruption. In: Nicosia, G., Ojha, V., La Malfa, E., La Malfa, G., Pardalos, P.M., Umeton, R. (eds) Machine Learning, Optimization, and Data Science. LOD 2023. Lecture Notes in Computer Science, vol 14505. Springer, Cham. https://doi.org/10.1007/978-3-031-53969-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53969-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53968-8

  • Online ISBN: 978-3-031-53969-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics