Abstract
This paper presents a bilateral teleoperation scheme for the aerial manipulator consisting of a 3DOF robotic arm on a six-propeller unmanned aerial vehicle (Matrix 600 Pro), which allows the operator to perform complex tasks in partially structured environments. The development of the controller is based on the kinematic model of the aerial manipulator, which allows precise control of its movements in relation to the use of a haptic device (Falcon Novint), which allows a feedback of forces from the operator environment. In addition, a teleoperation control scheme is proposed that performs actions in: i) Locomotion mode, this allows the manipulation and navigation of the robot’s movement; ii) Navigation mode, which allows transmitting the desired movement of the UAV by means of speed signals; and iii) Manipulation mode, allows to transmit the desired movement of the robotic arm through positions. Tests were performed in a virtual reality environment, in order to test control algorithms and perform simulations that resemble the conditions of a real environment, in addition experimental tests of the proposed teleoperation scheme were performed, obtaining an optimal behavior of the aerial manipulator robot. Finally, simulation results will be presented to validate and test the teleoperation scheme.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Andaluz, V.H., Varela-Aldás, J., Chicaiza, F.A., Quevedo, W.X., Ruales, B.: Teleoperación de un manipulador móvil con retroalimentación de fuerzas para evasión de obstáculos (2019)
Carvajal, C.P., Andaluz, V.H., Roberti, F., Carelli, R.: Path-following control for aerial manipulators robots with priority on energy saving. Control Eng. Pract. 131, 105401 (2023). https://doi.org/10.1016/j.conengprac.2022.105401
Ruiz, R.J., Saravia, J.L., Andaluz, V.H., Sánchez, J.S.: Virtual training system for unmanned aerial vehicle control teaching–learning processes. Electronics 11(16), 2613 (2022). https://doi.org/10.3390/electronics11162613
Loor, S.J., Bejarano, A.R., Silva, F.M., Andaluz, V.H.: Construction and control aerial manipulator robot. In: Fujita, H., Fournier-Viger, P., Ali, M., Sasaki, J. (eds.) IEA/AIE 2020. LNCS (LNAI), vol. 12144, pp. 116–123. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-55789-8_11
Aguirre, O.A., Nacato, J.C., Andaluz, V.H.: Virtual simulator for collaborative tasks of aerial manipulator robots. In: 2020 15th Iberian Conference on Information Systems and Technologies (CISTI), pp. 1–6. IEEE, Sevilla, Spain, June 2020. https://doi.org/10.23919/CISTI49556.2020.9141092
Ghazbi, S.N., Aghli, Y., Alimohammadi, M., Akbari, A.A.: Quadrotors unmanned aerial vehicles: a review. Int. J. Smart Sens. Intell. Syst. 9(1), 309–333 (2016). https://doi.org/10.21307/ijssis-2017-872
Ruggiero, F., Lippiello, V., Ollero, A.: Aerial manipulation: a literature review. IEEE Robot. Autom. Lett. 3(3), 1957–1964 (2018). https://doi.org/10.1109/LRA.2018.2808541
Pantoja, A., Yela, J.E.G.: Nonlinear control of a quadrotor for attitude stabilization. In: 2017 IEEE 3rd Colombian Conference on Automatic Control (CCAC), pp. 1–6. IEEE, Cartagena, October 2017. https://doi.org/10.1109/CCAC.2017.8276467
2016_Ollero_Anibal_Los_primeros_robots_manipuladores_aereos.pdf
Ortiz, J.S., et al.: Modeling and kinematic nonlinear control of aerial mobile manipulators. In: Zeghloul, S., Romdhane, L., Laribi, M.A. (eds.) Computational Kinematics. Mechanisms and Machine Science, vol. 50, pp. 87–95. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-60867-9_11
Andaluz, V.H., et al.: Robust control with dynamic compensation for human-wheelchair system. In: Zhang, X., Liu, H., Chen, Z., Wang, N. (eds.) ICIRA 2014. LNCS (LNAI), vol. 8917, pp. 376–389. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13966-1_37
Chicaiza, F.A., et al.: Real–time virtual reality visualizer for unmanned aerial vehicles. In: De Paolis, L.T., Bourdot, P. (eds.) AVR 2018. LNCS, vol. 10851, pp. 479–495. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95282-6_35
Carvajal, C.P., Proaño, L., Pérez, J.A., Pérez, S., Ortiz, J.S., Andaluz, V.H.: Robotic applications in virtual environments for children with autism. In: De Paolis, L.T., Bourdot, P., Mongelli, A. (eds.) AVR 2017. LNCS, vol. 10325, pp. 175–187. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60928-7_15
Andaluz, V.H., Ortiz, J.S., Sanchéz, J.S.: Bilateral control of a robotic arm through brain signals. In: De Paolis, L.T., Mongelli, A. (eds.) AVR 2015. LNCS, vol. 9254, pp. 355–368. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22888-4_26
Emanuel, S., Diego, S., Danilo, C., Vicente, M.: Esquema Tipo-PD másImpedancia Modificado para Teleoperación Bilateral de nn Robot Móvil considerando Retardos de Tiempo 38(2) (2017)
Cerón Correa, A.: Sistemas robóticos teleoperados. Cien. Ing. Neogranadina 15, 62–72 (2005). https://doi.org/10.18359/rcin.1255
Khong, M.-H., Liu, Y.-C.: Control of bilateral teleoperation systems using single controller over delayed communication network. In: 2015 IEEE Conference on Control Applications (CCA), pp. 507–512. IEEE, Sydney, Australia, September 2015. https://doi.org/10.1109/CCA.2015.7320680
Rubio, F., Valero, F., Llopis-Albert, C.: A review of mobile robots: concepts, methods, theoretical framework, and applications. Int. J. Adv. Robot. Syst. 16(2), 172988141983959 (2019). https://doi.org/10.1177/1729881419839596
Ortiz, J.S., Palacios-Navarro, G., Andaluz, V.H., Guevara, B.S.: Virtual reality-based framework to simulate control algorithms for robotic assistance and rehabilitation tasks through a standing wheelchair. Sensors 21(15), 5083 (2021). https://doi.org/10.3390/s21155083
Andaluz, V.H., Salinas, L., Roberti, F., Toibero, J.M., Carelli, R.: Switching control signal for bilateral tele-operation of a mobile manipulator. In: 2011 9th IEEE International Conference on Control and Automation (ICCA), pp. 778–783. IEEE, Santiago, Chile, December 2011. https://doi.org/10.1109/ICCA.2011.6138029
Carvajal, C.P., Méndez, M.G., Torres, D.C., Terán, C., Arteaga, O.B., Andaluz, V.H.: Autonomous and tele-operated navigation of aerial manipulator robots in digitalized virtual environments. In: De Paolis, L.T., Bourdot, P. (eds.) AVR 2018. LNCS, vol. 10851, pp. 496–515. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95282-6_36
Andaluz, V.H., et al.: Robot nonlinear control for Unmanned Aerial Vehicles’ multitasking. AA 38(5), 645–660 (2018). https://doi.org/10.1108/AA-02-2018-036
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Chanataxi, A.R., Ortiz, J.S. (2024). Teleoperation of an Aerial Manipulator Robot with a Focus on Teaching: Learning Processes. In: Arai, K. (eds) Advances in Information and Communication. FICC 2024. Lecture Notes in Networks and Systems, vol 921. Springer, Cham. https://doi.org/10.1007/978-3-031-54053-0_29
Download citation
DOI: https://doi.org/10.1007/978-3-031-54053-0_29
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-54052-3
Online ISBN: 978-3-031-54053-0
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)