Skip to main content

Teleoperation of an Aerial Manipulator Robot with a Focus on Teaching: Learning Processes

  • Conference paper
  • First Online:
Advances in Information and Communication (FICC 2024)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 921))

Included in the following conference series:

  • 475 Accesses

Abstract

This paper presents a bilateral teleoperation scheme for the aerial manipulator consisting of a 3DOF robotic arm on a six-propeller unmanned aerial vehicle (Matrix 600 Pro), which allows the operator to perform complex tasks in partially structured environments. The development of the controller is based on the kinematic model of the aerial manipulator, which allows precise control of its movements in relation to the use of a haptic device (Falcon Novint), which allows a feedback of forces from the operator environment. In addition, a teleoperation control scheme is proposed that performs actions in: i) Locomotion mode, this allows the manipulation and navigation of the robot’s movement; ii) Navigation mode, which allows transmitting the desired movement of the UAV by means of speed signals; and iii) Manipulation mode, allows to transmit the desired movement of the robotic arm through positions. Tests were performed in a virtual reality environment, in order to test control algorithms and perform simulations that resemble the conditions of a real environment, in addition experimental tests of the proposed teleoperation scheme were performed, obtaining an optimal behavior of the aerial manipulator robot. Finally, simulation results will be presented to validate and test the teleoperation scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Andaluz, V.H., Varela-Aldás, J., Chicaiza, F.A., Quevedo, W.X., Ruales, B.: Teleoperación de un manipulador móvil con retroalimentación de fuerzas para evasión de obstáculos (2019)

    Google Scholar 

  2. Carvajal, C.P., Andaluz, V.H., Roberti, F., Carelli, R.: Path-following control for aerial manipulators robots with priority on energy saving. Control Eng. Pract. 131, 105401 (2023). https://doi.org/10.1016/j.conengprac.2022.105401

  3. Ruiz, R.J., Saravia, J.L., Andaluz, V.H., Sánchez, J.S.: Virtual training system for unmanned aerial vehicle control teaching–learning processes. Electronics 11(16), 2613 (2022). https://doi.org/10.3390/electronics11162613

  4. Loor, S.J., Bejarano, A.R., Silva, F.M., Andaluz, V.H.: Construction and control aerial manipulator robot. In: Fujita, H., Fournier-Viger, P., Ali, M., Sasaki, J. (eds.) IEA/AIE 2020. LNCS (LNAI), vol. 12144, pp. 116–123. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-55789-8_11

    Chapter  Google Scholar 

  5. Aguirre, O.A., Nacato, J.C., Andaluz, V.H.: Virtual simulator for collaborative tasks of aerial manipulator robots. In: 2020 15th Iberian Conference on Information Systems and Technologies (CISTI), pp. 1–6. IEEE, Sevilla, Spain, June 2020. https://doi.org/10.23919/CISTI49556.2020.9141092

  6. Ghazbi, S.N., Aghli, Y., Alimohammadi, M., Akbari, A.A.: Quadrotors unmanned aerial vehicles: a review. Int. J. Smart Sens. Intell. Syst. 9(1), 309–333 (2016). https://doi.org/10.21307/ijssis-2017-872

  7. Ruggiero, F., Lippiello, V., Ollero, A.: Aerial manipulation: a literature review. IEEE Robot. Autom. Lett. 3(3), 1957–1964 (2018). https://doi.org/10.1109/LRA.2018.2808541

  8. Pantoja, A., Yela, J.E.G.: Nonlinear control of a quadrotor for attitude stabilization. In: 2017 IEEE 3rd Colombian Conference on Automatic Control (CCAC), pp. 1–6. IEEE, Cartagena, October 2017. https://doi.org/10.1109/CCAC.2017.8276467

  9. 2016_Ollero_Anibal_Los_primeros_robots_manipuladores_aereos.pdf

    Google Scholar 

  10. Ortiz, J.S., et al.: Modeling and kinematic nonlinear control of aerial mobile manipulators. In: Zeghloul, S., Romdhane, L., Laribi, M.A. (eds.) Computational Kinematics. Mechanisms and Machine Science, vol. 50, pp. 87–95. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-60867-9_11

    Chapter  Google Scholar 

  11. Andaluz, V.H., et al.: Robust control with dynamic compensation for human-wheelchair system. In: Zhang, X., Liu, H., Chen, Z., Wang, N. (eds.) ICIRA 2014. LNCS (LNAI), vol. 8917, pp. 376–389. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13966-1_37

    Chapter  Google Scholar 

  12. Chicaiza, F.A., et al.: Real–time virtual reality visualizer for unmanned aerial vehicles. In: De Paolis, L.T., Bourdot, P. (eds.) AVR 2018. LNCS, vol. 10851, pp. 479–495. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95282-6_35

    Chapter  Google Scholar 

  13. Carvajal, C.P., Proaño, L., Pérez, J.A., Pérez, S., Ortiz, J.S., Andaluz, V.H.: Robotic applications in virtual environments for children with autism. In: De Paolis, L.T., Bourdot, P., Mongelli, A. (eds.) AVR 2017. LNCS, vol. 10325, pp. 175–187. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60928-7_15

    Chapter  Google Scholar 

  14. Andaluz, V.H., Ortiz, J.S., Sanchéz, J.S.: Bilateral control of a robotic arm through brain signals. In: De Paolis, L.T., Mongelli, A. (eds.) AVR 2015. LNCS, vol. 9254, pp. 355–368. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22888-4_26

    Chapter  Google Scholar 

  15. Emanuel, S., Diego, S., Danilo, C., Vicente, M.: Esquema Tipo-PD másImpedancia Modificado para Teleoperación Bilateral de nn Robot Móvil considerando Retardos de Tiempo 38(2) (2017)

    Google Scholar 

  16. Cerón Correa, A.: Sistemas robóticos teleoperados. Cien. Ing. Neogranadina 15, 62–72 (2005). https://doi.org/10.18359/rcin.1255

  17. Khong, M.-H., Liu, Y.-C.: Control of bilateral teleoperation systems using single controller over delayed communication network. In: 2015 IEEE Conference on Control Applications (CCA), pp. 507–512. IEEE, Sydney, Australia, September 2015. https://doi.org/10.1109/CCA.2015.7320680

  18. Rubio, F., Valero, F., Llopis-Albert, C.: A review of mobile robots: concepts, methods, theoretical framework, and applications. Int. J. Adv. Robot. Syst. 16(2), 172988141983959 (2019). https://doi.org/10.1177/1729881419839596

  19. Ortiz, J.S., Palacios-Navarro, G., Andaluz, V.H., Guevara, B.S.: Virtual reality-based framework to simulate control algorithms for robotic assistance and rehabilitation tasks through a standing wheelchair. Sensors 21(15), 5083 (2021). https://doi.org/10.3390/s21155083

  20. Andaluz, V.H., Salinas, L., Roberti, F., Toibero, J.M., Carelli, R.: Switching control signal for bilateral tele-operation of a mobile manipulator. In: 2011 9th IEEE International Conference on Control and Automation (ICCA), pp. 778–783. IEEE, Santiago, Chile, December 2011. https://doi.org/10.1109/ICCA.2011.6138029

  21. Carvajal, C.P., Méndez, M.G., Torres, D.C., Terán, C., Arteaga, O.B., Andaluz, V.H.: Autonomous and tele-operated navigation of aerial manipulator robots in digitalized virtual environments. In: De Paolis, L.T., Bourdot, P. (eds.) AVR 2018. LNCS, vol. 10851, pp. 496–515. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95282-6_36

    Chapter  Google Scholar 

  22. Andaluz, V.H., et al.: Robot nonlinear control for Unmanned Aerial Vehicles’ multitasking. AA 38(5), 645–660 (2018). https://doi.org/10.1108/AA-02-2018-036

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica S. Ortiz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chanataxi, A.R., Ortiz, J.S. (2024). Teleoperation of an Aerial Manipulator Robot with a Focus on Teaching: Learning Processes. In: Arai, K. (eds) Advances in Information and Communication. FICC 2024. Lecture Notes in Networks and Systems, vol 921. Springer, Cham. https://doi.org/10.1007/978-3-031-54053-0_29

Download citation

Publish with us

Policies and ethics