
ar
X

iv
:2

30
2.

12
74

5v
2

 [
cs

.D
C

]
 1

5
A

ug
 2

02
3

A Simple Single Slot Finality Protocol For Ethereum

Francesco D’Amato

Ethereum Foundation

francesco.damato@ethereum.org

Luca Zanolini

Ethereum Foundation

luca.zanolini@ethereum.org

Abstract

Currently, Gasper, the implemented consensus protocol of Ethereum, takes between 64 and 95 slots to
finalize blocks. Because of that, a significant portion of the chain is susceptible to reorgs. The possibility
to capture MEV (Maximum Extractable Value) through such reorgs can then disincentivize honestly
following the protocol, breaking the desired correspondence of honest and rational behavior. Moreover,
the relatively long time to finality forces users to choose between economic security and faster transaction
confirmation. This motivates the study of the so-called single slot finality protocols: consensus protocols
that finalize a block in each slot and, more importantly, that finalize the block proposed at a given slot
within such slot.

In this work we propose a simple, non-blackbox protocol that combines a synchronous dynamically
available protocol with a partially synchronous finality gadget, resulting in a consensus protocol that
can finalize one block per slot, paving the way to single slot finality within Ethereum. Importantly, the
protocol we present can finalize the block proposed in a slot, within such slot.

1 Introduction

Traditional Byzantine consensus protocols, such as PBFT [5], are devised in a partial synchronous network
model [8], in the sense that they always guarantee safety, but they guarantee liveness only after GST. In
this setting, however, participants in the protocol are fixed, known in advance, and without possibility to go
offline.

Dynamic participation (among systems’ participants) has lately become an essential prerequisite for de-
veloping permissionless consensus protocols. This concept, initially formalized by Pass and Shi via their
sleepy model, [16] encapsulates the ability of a system to handle participants joining or leaving during a pro-
tocol execution. In particular, a consensus protocol that preserves safety and liveness while allowing dynamic
participation is called dynamically available.

One problem of such protocols, as a result of the CAP theorem [9][11], is that they do not tolerate network
partitions; no consensus protocols can both satisfy liveness (under dynamic participation) and safety (under
temporary network partitions). Simply put, a consensus protocol (for state-machine replication) cannot pro-
duce a single chain that concurrently offers dynamic availability and guarantees transaction finality in case
of asynchronous periods or network partitions. Because of that, dynamically available protocols studied so
far are focused on a synchronous model [6][12][13].

To overcome this impossibility result, Neu at al. [15] introduce a family of protocols, referred to as ebb-
and-flow protocols, which operate under two confirmation rules, and outputting two chains, one a prefix
of the other. The first confirmation rule defines what is known as the available chain, which provides live-
ness under dynamic participation (and synchrony). The second confirmation rule defines the finalized chain,
and provides safety even under network partitions. Interestingly, such family of protocols also captures the
nature of the Ethereum consensus protocol, Gasper [4], in which the available chain is output by (the con-
firmation rule of) LMD-GHOST [18], and the finalized chain by the (confirmation rule of the) finality gadget
Casper FFG [3]. However, the (original version of) LMD-GHOST is actually not secure [15] even in a context
of full-participation.

Motivated by finding a (more secure) alternative to LMD-GHOST, and following the ebb-and-flow ap-
proach, D’Amato et al. [6] devise a synchronous dynamically available consensus protocol, Goldfish, that,

1

http://arxiv.org/abs/2302.12745v2
francesco.damato@ethereum.org
luca.zanolini@ethereum.org

combined with a generic (partially synchronous) finality gadget, implements an ebb-and-flow protocol. More-
over, Goldfish is reorg resilient: blocks proposed by honest validators are guaranteed inclusion in the chain.
However, Goldfish is brittle to temporary asynchrony [7], in the sense that even a single violation of the bound
of network delay can lead to a catastrophic failure, jeopardizing the safety of any previously confirmed block,
resulting in a protocol that is not practically viable to replace LMD-GHOST in Ethereum. In other words,
Goldfish is not asynchrony resilient.

To cope with the problem of Goldfish, D’Amato and Zanolini [7] propose RLMD-GHOST, a provably secure
synchronous protocol that does not lose safety during bounded periods of asynchrony and which tolerates
a weaker form of dynamic participation, offering a trade-off between dynamic availability and asynchrony
resilience. Their protocol results appealing for practical systems, where strict synchrony assumptions might
not always hold, contrary to what is generally assumed with standard synchronous protocols.

In this work we build upon the work of D’Amato and Zanolini [7], and we devise a protocol that combines
RLMD-GHOST with a partially synchronous finality gadget. In particular, we give the following contribu-
tions. We devise a secure and reorg-resilient ebb-and-flow protocol [15] as a potential substitute for the
current Ethereum consensus protocol, Gasper [4], which can finalize (at most) one block per slot. In par-
ticular, our protocol can finalize the block proposed in the current slot, within such slot, paving the way to
single slot finality [2] protocols for practical use within Ethereum. Finally, we expand upon the generalized
sleepy model [7] introduced by D’Amato and Zanolini[7], adjusting it to accommodate a partially synchronous
setting. We refer to the resulting model as the generalized partially synchronous sleepy model. This enhanced
model not only extends the original sleepy model, first presented by Pass and Shi [16], but it also introduces
stronger and more generalized constraints related to the corruption and sleepiness power of the adversary.
Furthermore, our model integrates the concept of partial synchrony, setting it apart from the model pro-
posed by D’Amato and Zanolini [7]. Our security results will be proven within this extended model. The
remainder of this work is structured as it follows. In Section 3 we present our system model. Prerequisites
for this work are presented in Section 4; we recall RLMD-GHOST as originally presented by D’Amato and
Zanolini [7], state its properties, and show a class of protocols, called propose-vote-merge protocols, that
groups together (a variant of) LMD-GHOST, (a variant of) Goldfish, and RLMD-GHOST under an unique
framework. Protocol specifications are described in Section 5. In particular, we show how to slightly modify
RLMD-GHOST to interact with a finality gadget, and then present the full protocol. In Section 6 we formally
prove the properties that our protocol satisfy. Finally, in Section 7 we enable our protocol to finalize the
block proposed in the current slot through acknowledgments, messages sent by participants in the consensus
protocol, but only relevant to external observers. Conclusions are drawn in Section 8.

2 Related works

Pass and Shi [16] introduced the sleepy model of consensus, which models a distributed system where the
participants can be either online or offline, meaning their participation is dynamic. This differs from the
standard models in the literature that assume honest participants are always online and execute the assigned
protocol. Dynamic participation became a key requirement to devise consensus protocols, as it adds a
more robustness to systems that allow participants to go offline, while preserving safety and liveness of such
dynamically available protocols.

Neu et al [15] introduce the partially synchronous sleepy model and define the objectives of the Ethereum
consensus protocol, Gasper [4], through the concept of an ebb-and-flow protocol. A secure ebb-and-flow
protocol produces both a dynamically available ledger and a finalized ledger, that is always safe and live after
max{GST,GAT}. In the context of Gasper, the dynamically available ledger is defined by LMD-GHOST [18]
and the finalized ledger by Casper [3].

However, under a deeper analysis, Neu et al [15] show that LMD-GHOST is not dynamically available, by
presenting an attack to its liveness. D’Amato et al. [6] introduce Goldfish, a simplified variant of LMD-GHOST,
aiming at solving some problems related to LMD-GHOST [15, 14], that results in a synchronous dynamically
available protocol in the partially synchronous sleepy model that, composed with a generic finality gadget,
implements an ebb-and-flow protocol. Goldfish however is brittle to temporary asynchrony, in the sense that
even a single violation of the bound of network delay can lead to a catastrophic failure, jeopardizing the
safety of any previously confirmed block.

D’Amato and Zanolini [7] introduce the generalized sleepy model. This model takes up from the original

2

sleepy model presented by Pass and Shi [16] and extends it with more generalized and stronger constraints in
the corruption and sleepiness power of the adversary. This allow to explore a broad space of dynamic partic-
ipation regimes which fall between complete dynamic participation and no dynamic participation. Moreover,
they introduce RLMD-GHOST, a generalization of (variants of) Goldfish and LMD-GHOST, that offers a trade-
off between resilience to temporary asynchrony and dynamic availability. RLMD-GHOST represents a middle
ground between LMD-GHOST, an asynchrony resilient but not dynamically available protocol, and Goldfish,
a dynamically available but not asynchrony resilient protocol. RLMD-GHOST is resilient to bounded asyn-
chrony up to a vote expiry period, and satisfies an appropriate notion of dynamic availability in the generalized
sleepy model.

3 Model and Preliminary Notions

3.1 System model

We consider a set of n validators v1, . . . , vn that communicate with each other through exchanging messages.
Every validator is identified by a unique cryptographic identity and the public keys are common knowledge.
Validators are assigned a protocol to follow, consisting of a collection of programs with instructions for all
validators. A validator that follows its protocol during an execution is called honest. Each validator has a
stake, which we assume to be the same for every validator. If a validator vi fails to serve the role assigned
to it or tries to deliberately deviate from the protocol, i.e., vi is Byzantine, and a proof of this misbehavior
is given, it loses a part of its stake proportional to the severity of the fault (vi gets slashed). We assume
the existence of a probabilistic poly-time adversary A that can choose up to f validators to corrupt over an
entire protocol execution. Corrupted validators stay corrupted for the remaining duration of the protocol
execution, and are thereafter called adversarial. The adversary A knows the the internal state of adversarial
validators. The adversary is adaptive: it chooses the corruption schedule dynamically, during the protocol
execution.

We assume that a best-effort gossip primitive that will reach all validators is available. In a protocol,
this primitive is accessed through the events “sending a message through gossip” and “receiving a gossiped
message.” Moreover, we assume that messages from honest validator to honest validator are eventually
received and cannot be forged. This includes messages sent by Byzantine validators, once they have been
received by some honest validator vi and gossiped around by vi.

Time is divided into discrete rounds. We consider a partially synchronous model in which validators
have synchronized clocks but there is no a priori bound on message delays. However, there is a time (not
known by the validators), called global stabilization time (GST), after which message delays are bounded
by ∆ rounds. Moreover, we define the notion of slot as a collection of 4∆ rounds. The adversary A can
decide for each round which honest validator is awake or asleep at that round [16]. Asleep validators do not
execute the protocol and messages for that round are queued and delivered in the first round in which the
validator is awake again. Honest validators that become awake at round r, before starting to participate
in the protocol, must first execute (and terminate) a joining protocol (Section 4), after which they become
active. All adversarial validators are always awake, and are not prescribed to follow any protocol. Therefore,
we always use active, awake, and asleep to refer to honest validators. As for corruptions, the adversary
is adaptive also for sleepiness, i.e., the sleepiness schedule is also chosen dynamically by the adversary.
Moreover, there is a time (not known by the validators), called global awake time (GAT), after which all
validators are always awake.

We assume that every message has an expiration period η [6][7]. More specifically, for a given slot t and
a constant η ∈ N greater than or equal to 0, the expiration period for slot t is the interval [t− η, t− 1]. Only
messages sent within this time frame influence the behavior of the protocol at slot t. Furthermore, during
each protocol execution slot, only the most recent messages sent by validators are considered.

We require that, for some fixed parameter 1 ≤ τ ≤ ∞, the following condition, referred by D’Amato and
Zanolini [7] as τ-sleepiness at slot t, holds for any slot t after GST:

|Ht−1| > |At ∪ (Ht−τ,t−2 \Ht−1)| (1)

with Ht, At, and Hs,t are the set of active validators at round 4∆t+∆, the set of adversarial validators

at round 4∆t+∆, and the set of validators that are active at some point in slots [s, t], i.e., Hs,t =
⋃t

i=s Hi

3

(if i < 0 then Hi := ∅), respectively. Note that f = limt→∞ |At|. In other words, we require the number of
active validators at round 4∆(t − 1) + ∆ to be greater than the number of adversarial validators at round
4∆t+∆, together with the number of validators that were active at some point between rounds 4∆(t−τ)+∆
and 4∆(t− 2) + ∆, but not at round 4∆(t− 1) + ∆.

Intuitively, this condition is designed to work with a protocol that applies expiration to its messages, with
the period set as η = τ . The messages taken into consideration at slot t originate from slots [t − τ, t − 1].
Among these, the only messages sent by honest validators that can be relied upon come from Ht−1. However,
unexpired messages from honest validators, who were inactive in slot t−1, could potentially aid the adversary.

Note that our approach diverges from the generalized sleepy model proposed by D’Amato and Zanolini [7].
Specifically, we require that Equation 1 only holds after GST and we refer to this model as the generalized
partially synchronous τ-sleepy model (or wlog, when the context is clear, as the τ-sleepy model for short).
Finally, we say that an execution in the generalized partially synchronous sleepy model is τ-compliant if it
satisfies τ -sleepiness (Equation 1).

3.2 Validator internals

View. A view (at a given round r), denoted by V , is a subset of all the messages that a validator has
received until r. The notion of view is local for the validators. For this reason, when we want to focus the
attention on a specific view of a validator vi, we denote with Vi the view of vi (at a round r).

Blocks and chains. Let’s consider two chains, ch1 and ch2. We denote ch1 ≺ ch2 if ch1 acts as a prefix to
ch2. When block B is at the end of chain ch, we refer to it as the head of ch, and we equate the entire chain
with B. Therefore, if ch′ ≺ ch and A is the head of ch′, we also express this as ch′ ≺ B and A ≺ B.

Fork-choice functions. A fork-choice function is a deterministic function, denoted as FC. This function,
when given a view V and a slot t as inputs, produces a block B. If B is a block extending FC(V , t), then
FC(V ∪B, t) equals B. The result of FC is referred to as the head of the canonical chain in V , and the chain
with B as its head is referred to as the canonical chain in V . Every validator keeps track of its canonical
chain and updates it using FC, according to its local view. The canonical chain for validator vi at round r is
represented as chri . In this work we will focus our attention on a specific class of fork-choice functions based
on GHOST [17]. D’Amato and Zanolini [7] characterize a GHOST-based fork-choice function by a view
filter FIL, which takes as input a view V and a slot t, and outputs (V ′, t), where V ′ is another view such that
V ′ ⊆ V . Then, FC(V , t) := GHOST(FIL(V , t)), i.e., FC := GHOST ◦ FIL.

3.3 Security

Security Parameters. In this work we treat λ and κ as the security parameters related to the crypto-
graphic components utilized by the protocol and the protocol’s own security parameter, respectively. We also
account for a finite time horizon, represented as Thor, which is polynomial in relation to κ. An event is said
to occur with overwhelming probability if it happens except with probability which is negl(κ) + negl(λ). The
properties of cryptographic primitives hold true with a probability of negl(λ), signifying an overwhelming
probability, although we will not explicitly mention this in the subsequent sections of this work.

Confirmed chain. The protocols we consider always specify a confirmation rule, with whom validators
can identify a confirmed prefix of the canonical chain. Alongside the canonical chain, validators then also
keep track of a confirmed chain. We refer to the confirmed chain of validator vi at round r as Chri (cf. ch

r
i

for the canonical chain).

Definition 1 (Secure protocol [6]). We say that a protocol outputting a confirmed chain Ch is secure after
time Tsec, and has confirmation time Tconf

1, if Ch satisfies:

1If the protocol satisfies liveness, then at least one honest proposal is added to the confirmed chain of all active validators
every Tconf slots. Since honest validators include all transactions they see, this ensures that transactions are confirmed within
time Tconf +∆ (assuming infinite block sizes or manageable transaction volume).

4

Safety For any two rounds r, r′ ≥ Tsec, and any two honest validators vi and vj (possibly i = j) at rounds r

and r′ respectively, either Chri ≺ Ch
r′

j or Chr
′

j ≺ Ch
r
i .

Liveness For any rounds r ≥ Tsec and r′ ≥ r + Tconf , and any honest validator vi active at round r′, Chr
′

i

contains a block proposed by an honest validator at a round > r.

A protocol satisfies τ-safety and τ-liveness if it satisfies safety and liveness, respectively, in the τ-sleepy
model, i.e., in τ -compliant executions. A protocol satisfies τ -security if it satisfies τ -safety and τ -liveness.

We now recall the definitions of dynamic availability and reorg resilience from [7]. We consider them only
under network synchrony, i.e., for GST = 0, as this is the only setting in which we utilize them. Note that it is
customary to only analyze dynamic availability with GST = 0, when analyzing the behavior of ebb-and-flow
protocols.

Definition 2 (Dynamic availability). We say that a protocol is τ -dynamically-available if and only if it
satisfies τ -security with confirmation time Tconf = O(κ) when GST = 0. Moreover, we say that a protocol
is dynamically available if it is 1-dynamically-available, as this corresponds to the usual notion of dynamic
availability.

Definition 3 (Reorg resilience). An execution with GST = 0 satisfies reorg resilience if any honest proposal
B from a slot t is always in the canonical chain of all active validators at rounds ≥ 4∆t+∆. A protocol is
τ-reorg-resilient if all τ -compliant executions with GST = 0 satisfy reorg resilience.

Definition 4 (Accountable safety). We say that a protocol has accountable safety with resilience f > 0
if, upon a safety violation, it is possible to identify at least f responsible participants. In particular, it is
possible to collect evidence from sufficiently many honest participants and generate a cryptographic proof
that identifies f adversarial participants as protocol violators. Such proof cannot falsely accuse any honest
participant that followed the protocol correctly. Finally, we also say that a chain is f -accountable if the
protocol outputting it has accountable safety with resilience f . If a protocol Π outputs multiple chains
Ch1, . . . ,Chk, we say that Chi is f -accountable if Πi is, where Πi is the protocol which runs Π and outputs
only Chi.

Ebb-and-flow protocols. Neu et al. [15] propose a protocol with two confirmation rules that outputs
two chains, one that provides liveness under dynamic participation (and synchrony), and one that provides
accountable safety even under network partitions. This protocol is called ebb-and-flow protocol. We present
a generalization of it, in the τ -sleepy model.

Definition 5 (τ -secure ebb-and-flow protocol). A τ -secure ebb-and-flow protocol outputs an available chain
chAva that is τ -dynamically-available if GST = 0, and a finalized (and accountable) chain chFin that, if
f < n

3 , is always safe and is live after max{GST,GAT}. Moreover, for each honest validator vi and for every
round r, chFinri is a prefix of chAvari .

4 Propose-vote-merge protocols

The aim of this work is to present a secure ebb-and-flow [15] protocol that can finalize (at most) one block per
slot and, in particular, that can finalize within slot t the block proposed in t. This is achieved by revisiting
the propose-vote-merge protocol RLMD-GHOST introduced by D’Amato and Zanolini [7] as the basis for our
protocol implementation. Propose-vote-merge protocols proceed in slots consisting of k rounds2, each having
a proposer vp, chosen through a proposer selection mechanism among the set of validators. In particular, at
the beginning of each slot t, the proposer vp proposes a block B. Then, all active validators (also referred as
voters) vote after ∆ rounds. Every validator vi has a buffer Bi, a collection of messages received from other

2D’Amato and Zanolini [7] implement RLMD-GHOST with fast confirmation with k = 3∆ (Appendix B [7]). However, we
will consider k = 4∆, following the approach taken by D’Amato et al. [6] when presenting Goldfish with fast confirmation. We
will show how RLMD-GHOST with fast confirmation can be changed into its variant with k = 4∆ in Section 5 while presenting
our protocol.

5

validators, and a view Vi, used to make consensus decisions, which admits messages from the buffer only at
specific points in time.

Propose-vote-merge protocols are defined through a deterministic fork-choice function FC, which is used
by honest proposers and voters to decide how to propose and vote, respectively, based on their view at the
round in which they are performing those actions. It is moreover used as the basis of a confirmation rule
(Section 5.2), which defines the output of the protocol, and thus with respect to which the security of the
protocol is defined. In the case of RLMD-GHOST, its fork-choice function RLMD-GHOST considers the
last (non equivocating) messages sent by validators that are not older than t − η slots (for an expiration
period η), in order to make protocol’s decisions. In particular, the filter function FILrlmd(V , t) removes all
but the latest messages within the expiry period [t − η, t) for slot t, from non-equivocating validators, i.e.,
FILrlmd = FILlmd ◦ FILη-exp ◦ FILeq. Here, FILlmd(V , t) removes all but the latest votes of every validator
(possibly more than one) from V and outputs the resulting view, i.e., it implements the latest message
(LMD) rule, FILη-exp(V , t) removes all votes from slots < t − η from V and outputs the resulting view, and
FILeq(V , t) removes all votes by equivocating validators in V [1], i.e., validators for which V contains multiple,
equivocating, votes for some slot t.

A propose-vote-merge protocol proceeds in three phases:
propose: In this phase, which starts at the beginning of a slot, the proposer vp merges its view Vp with

its buffer Bp, i.e., Vp ← Vp ∪ Bp, and sets Bp ← ∅. Then, vp runs the fork-choice function FC with inputs
its view Vp and slot t, obtaining the head of the chain B′ = FC(Vp, t). Proposer vp extends B′ with a new
block B, and updates its canonical chain accordingly, setting chp ← B. Finally, it broadcasts the message
[propose, B, Vp ∪ {B}, t, vp].

vote: Here, every validator vi that receives a proposal message [propose, B, V , t, vp] from vp merges
its view with the proposed view V , by setting Vi ← Vi ∪ V . Then, it broadcasts votes for some blocks based
on its view. We omit, for the moment, for which blocks a validator vi votes: it will become clear once we
present the full protocol.

merge: In this phase, every validator vi merges its view with its buffer, i.e., Vi ← Vi ∪ Bi, and sets
Bi ← ∅.

The merge phase, along with all other operations involving views and buffers discussed in the previous
section, are implemented using the view-merge technique [6][7][10]. The idea behind the view-merge technique
involves synchronizing the views of all honest validators with the view Vp of the proposer for a specific slot
before the validators broadcast their votes in that slot.

D’Amato et al. [6] introduce the notion of active validators3: awake validators that have terminated a
joining protocol at a round r, described as it follows. Assuming a propose-vote-merge protocol proceeding in
slots of k = 4∆ rounds, when an honest validator vi wakes up at some round r ∈ (4∆(t− 1)+3∆, 4∆t+3∆],
it immediately receives all the messages that were sent while it was asleep, and it adds them into its buffer Bi,
without actively participating in the protocol yet. All new messages which are received are also added to the
buffer Bi. Validator vi then waits for the next view-merge opportunity, at round 4∆t+3∆, in order to merge
its buffer Bi into its view Vi. At this point, vi starts executing the protocol. From this point on, validator vi
becomes active, until either corrupted or put to sleep by the adversary. We consider such a joining protocol
when describing our propose-vote-merge protocol.

5 Protocol specification

5.1 Data structures

We consider five message types: propose, block, checkpoint, head-vote, and ffg-vote. We make no
distinctions between network-level representation of blocks and votes, and their representation in a validator’s
view, i.e., there is no difference between block and *-vote messages and blocks and votes, and we usually
just refer to the latter. We describe the objects as tuples (data-type, . . .) with their data type as a tag,
but in practice mostly refer to them without the tag. We use dot notation to refer to the fields. For the tag,
we do so simply with .tag, for the other fields we use the generic names specified in the object descriptions

3Observe that D’Amato et al. [6] actually refer to awake validators to indicate what we call active, and to dreamy validators
to indicate what we call awake (but not active).

6

below, to access the different fields, e.g., B.t is the slot of block B. In the following, t is a slot and vi a
validator.

Blocks and checkpoints. A block is a tuple B = (block, b, t, vi), where b is a block body, i.e., the
protocol-specific content of the block4. A checkpoint is a tuple C = (checkpoint, B, t), where B is a block
and C.t ≥ B.t.

Votes. A head vote is a tuple [head-vote, B, t, vi], where B is a block. An FFG vote is a tuple [ffg-vote,
C1, C2, vi], where C1, C2 are checkpoints, C1.t < C2.t, and C1.B ≺ C2.B. We refer to the two checkpoints as
source and target, respectively, and to FFG votes as links between source and target. When vi is clear from
context, we also write C1 → C2 for the whole vote, e.g., we say that vi casts a C1 → C2 vote.

Proposals. A proposal is a tuple [propose, B, V , t, vi] where B is a block and V a view. We refer to V
as a proposed view.

Gossip behavior. Votes and blocks are gossiped at any time, regardless of whether they are received
directly or as part of another message. For example, a validator receiving a vote also gossips the block that
it contains, and a validator receiving a proposal also gossips the blocks and votes contained in the proposed
view. Finally, a proposal from slot t is gossiped only during the first ∆ rounds of slot t.

5.2 Confirmation rule

A confirmation rule allows validators to identify a confirmed prefix of the canonical chain, for which safety
properties hold, and which is therefore used to define the output of the protocol. Since the protocol we
are going to present outputs two chains, the available chain chAva and the finalized chain chFin, we have
two confirmation rules. One is finality, which we introduce in Section 5.3, and defines chFin. The other
confirmation rule, defining chAva, is the one adopted by RLMD-GHOST, in its variant supporting fast con-
firmation5. It is itself essentially split in two rules, a slow κ-deep confirmation rule, which is live also under
dynamic participation, and a fast optimistic rule, requiring 2

3n honest validators to be awake, i.e., a stronger
assumption than just τ−compliance. Both rules are employed at round 4∆t+ 2∆, and chAva is updated to
the highest block confirmed by either one, so that liveness of chAva only necessitates liveness of one of the
two rules. In particular, τ -compliance is sufficient for liveness. On the other end, safety of chAva requires
both rules to be safe.

5.3 FFG component

As mentioned above, a propose-vote-merge protocol is characterized by a fork-choice function that identifies
for every slot the current head of the canonical chain for a given validator. Moreover, we described two kind
of votes that a validator vi executes in the vote phase: a head-vote, used to vote for the head of the
canonical chain, i.e., the output of the fork-choice function evaluated at the current slot, and an ffg-vote,
used by the FFG-component of our protocol6.

The FFG component of our protocol aims at finalizing one block per slot by counting ffg-votes cast at
a given slot.

Justification. We say that a set of 2
3n distinct FFG votes C1 → C2 is a supermajority link between C1

and C2. We say that a checkpoint C is justified if there is a chain of k ≥ 0 supermajority links (Bgenesis,
0)→ C1 · · · → Ck−1 → C. In particular, (Bgenesis, 0) is justified. Finally, we say that a block B is justified if
there exists a justified checkpoint C with C.B = B.

4For simplicity, we omit a reference to the parent block.
5With some minor changes, as RLMD-GHOST still has 3∆ rounds per slots, by requiring an optimistic assumption on network

latency in order for fast confirmations to be live.
6The component of our protocol that outputs chFin is almost identical to Casper [3], the friendly finality gadget (FFG)

adopted by the Ethereum consensus protocol Gasper [4]. This is the reason why we decided to use the FFG terminology already
accepted within the Ethereum ecosystem.

7

Slashing. The slashing rules are the same as in Casper FFG. Validator vi is slashable (see Section 3) for
two distinct FFG votes (C1, C2, vi) and (C3, C4, vi) if either: E1 (Equivocation) C2.t = C4.t or E2 (Surround
voting) C3.t < C1.t < C2.t < C4.t.

Latest justified checkpoint and block. A checkpoint is justified in a view V if V contains the chain
of supermajority links justifying it. We refer to the justified checkpoint C of highest slot C.t in V as the
latest justified checkpoint in V , or LJ (V), and to LJ (V).B as the latest justified block in V , or LJ(V). Ties
are broken arbitrarily (the occurrence of a tie implies that n

3 validators are slashable for equivocation). For
brevity, we also use LJ i to refer to LJ (Vi), the latest justified checkpoint in the view Vi of validator vi.

Finality. A checkpoint C is finalized if it is justified and there exists a supermajority link C → C′ with
C′.t = C.t+ 1. A block B is finalized if there exists a finalized checkpoint C with B = C.B.

5.4 Voting

Fork-choice. Similarly to Gasper [4], we adopt an hybrid justification-respecting fork-choice, namely HFC,
building upon RLMD-GHOST [7] fork-choice function. HFC(V , t) starts from LJ(V), the latest justified
block in V , instead of Bgenesis, and then proceeds as RLMD-GHOST, i.e., it runs GHOST using the
view filtered by FILrlmd. Formally, we can define it by using another view filter, FILFFG, i.e., HFC =
RLMD-GHOST ◦ FILFFG. FILFFG(V , t) outputs (V ′, t), where V ′ filters out blocks in V that conflict with
LJ(V). In other words, it filters out branches which do not contain LJ(V), so LJ(V) is guaranteed to be
canonical.

Algorithm 1 HFC, the justification-respecting fork-choice function

1: function HFC(V, t)
2: return RLMD-GHOST(FILFFG(V, t))
3: function FILFFG(V, t)
4: V ′ ← V \ {B ∈ V, B.tag = block : LJ(V) 6≺ B ∧B 6≺ LJ(V)}
5: return (V ′, t)

Voting rules. Consider a validator vi voting at slot t. Head votes work exactly as in RLMD-GHOST, or any
propose-vote-merge protocol, i.e., validators vote for the output of their fork-choice: when it is time to vote,
validator vi casts vote [head-vote, HFC(Vi, t), t, vi]. FFG votes always use the latest justified checkpoint
as source. The target block is the highest confirmed descendant of the latest justified block, or the latest
justified block itself if there is none. The target checkpoint is then Ctarget = (argmaxB∈{LJi,chAva} |B|, t), with
|B| being the height of block B, and the FFG vote of vi is [ffg-vote, LJ i, Ctarget, vi], voting for the link
LJ i → Ctarget.

5.5 Protocol execution

Our protocol is implemented in Algorithm 2 and it works as it follows. Note that the Propose and Head-

vote phases are exactly as in a generic propose-vote-merge protocol (see Section 4). Moreover, a slot t in
our protocol begins at round 4∆t. At any time, the finalized chain chFini of validator vi just consists of the
finalized blocks according to its view Vi, so we omit explicit updates to chFin in the following.

Propose: At round 4∆t, proposer vp merges its view Vp with its buffer Bp, i.e., Vp ← Vp ∪ Bp, and sets
Bp ← ∅. Then, vp runs the fork-choice function HFC with inputs its view Vp and slot t, obtaining the head
of the chain B′ = HFC(Vp, t). Proposer vp extends B′ with a new block B, and updates its canonical chain
accordingly, by setting chp ← B. Finally, it broadcasts the proposal [propose, B, Vp ∪ {B}, t, vp].

Head-vote: In rounds [4∆t, 4∆t+∆], a validator vi, upon receiving a proposal message (propose, B,
V , t, vp) from vp, merges its view with the proposed view V by setting Vi ← Vi ∪V . At round 4∆t+∆, even
if no proposal is received, validator vi updates its canonical chain by setting chi ← HFC(Vi, t), and casts the
head vote (head-vote, HFC(Vi, t), t, vi).

8

Algorithm 2 Single slot finality protocol – code for validator vi

1: State
2: Vi ← {Bgenesis}: view of validator vi
3: Bi ← ∅: buffer of validator vi
4: chi ← Bgenesis: canonical chain of validator vi
5: t← 0: the current slot
6: r ← 0: the current round

propose

7: at r = 4∆t do

8: if vi = vtp then

9: Vi ← Vi ∪ Bi, Bi ← ∅ , B
′ ← HFC(Vi, t)

10: B ← NewBlock(B′), chi ← B

11: send message [propose, B, Vi ∪ {B}, t, vi] through gossip
Head-vote

12: at r = 4∆t+∆ do

13: chi ← HFC(Vi, t)
14: send message [head-vote, HFC(Vi, t), t, vi] through gossip

Confirm and ffg-vote

15: at r = 4∆t+ 2∆ do

16: Bfast ← Bgenesis

17: Sfast ← {B ≺ chi : |{vj : ∃B
′ ≻ B : [head-vote, B′, t, vj] ∈ Bi}| ≥ 2

3
n}

18: if Sfast 6= ∅ then:
19: Bfast ← arg max

Sfast

|B|

20: if ¬(Bfast ≺ chAvai ∧ ch
⌈κ
i ≺ chAvai) then:

21: chAvai ← arg max
ch∈{ch

⌈κ
i

,Bfast}

|ch|

22: Ctarget ← (arg max
B∈{LJi,chAvai}

|B|, t)

23: send message [ffg-vote, LJ i, Ctarget, vi] through gossip
merge

24: at r = 4∆t+ 3∆ do

25: Vi ← Vi ∪ Bi
26: Bi ← ∅
27: upon receiving a gossiped message [propose, B, V, t, vtp] do
28: Bi ← Bi ∪ {B}
29: if r ∈ [4∆t, 4∆t+∆] then
30: Vi ← Vi ∪ V
31: upon receiving a gossiped block B or a gossiped *-vote V from vj do

32: Bi ← Bi ∪ {B} or Bi ← Bi ∪ {V }

Confirm: At round 4∆t + 2∆, a validator vi selects for fast confirmation the highest canonical block
Bfast ≺ chi such that Bi contains ≥

2
3n votes from slot t for descendants of Bfast, from distinct validators.

It then updates its confirmed chain chAvai to the highest between Bfast and ch
⌈κ
i , the κ-deep prefix of its

canonical chain, as long as this does not result in updating chAvai to some prefix of it (we do not needlessly
revert confirmations).

ffg-vote: At round 4∆t + 2∆, after updating chAvai, a validator vi casts the FFG vote (ffg-vote,
LJ i, Ctarget, vi), where Ctarget = (arg max

B∈{LJi,chAvai}

|B|, t)

Merge: At round 4∆t + 3∆, every validator vi merges its view with its buffer, i.e., Vi ← Vi ∪ Bi, and
sets Bi ← ∅.

6 Analysis

Algorithm 2 works in the generalized partially synchronous sleepy model, and is in particular a τ -secure
ebb-and-flow protocol, if we strengthen τ-compliance to require that less than n

3 validators are ever slashable

9

Propose
Proposer merges
view and buffer,

broadcasts propose

msg. based on
it, containing a
block and view

Head vote
Validators merge the
proposed view with
theirs and broadcast
head-vote msg. for
the output of HFC

Confirm and
FFG vote

Validators run fast
confirmation rule,

and cast an ffg vote

msg. based the latest
confirmed block

Merge
Validators merge
buffer into view

Propose

4∆t
4∆t+ ∆ 4∆t+ 2∆

4∆t+ 3∆ 4∆(t+ 1)

Figure 1: Slot t of our protocol, with its four phases.

for equivocation, for reasons that will be explained shortly. For GST = 0, we show in Section 6.1 that, if the
execution is τ -compliant in this stronger sense, then all the properties of RLMD-GHOST [7] keep holding. In
Section 6.2 we show that the finalized chain chFin is n

3 -accountable, and thus always safe if f < n
3 . Moreover,

if f < n
3 , chFin is live after max{GST,GAT}.

Before proceeding with the analysis under synchrony and partial synchrony, we state without proof the
view-merge property, which follows from the usage of the view-merge technique, since it enables proposers to
synchronize the view of honest voters with theirs. It corresponds to Lemma 2 as presented by D’Amato and
Zanolini [7], with an addition regarding synchronization of the latest justified checkpoint.

Lemma 1. Suppose that t is a slot with an (honest) active proposer and that network synchrony holds in
rounds [4∆t − ∆, 4∆t + ∆]. Say the proposed block is B, and the latest justified checkpoint in the view of
the proposer is LJ p. Then, at round 4∆t +∆, all active validators broadcast a head-vote for the honest
proposal B of slot t. Moreover, LJ i = LJ p for any such active validator vi.

6.1 Synchrony

Throughout this part of the analysis, we assume that GST = 0, and that < n
3 validators are ever slashable

for equivocation, by which here we mean signing multiple head-votes for a single slot, rather than violating
E1. In other words, we are not concerned about equivocation with ffg-votes, but rather with head-votes,
which can similarly be declared a slashable offense. Observe that, in RLMD-GHOST with fast confirmations
(Appendix B [7]), this assumption is strictly needed for safety (and only for clients which use fast confir-
mations), but for example not for reorg resilience or liveness, because fast confirmations do not affect the
canonical chain. On the other hand, the protocol we present here utilizes confirmations as a prerequisite for
justification, and justification does affect the canonical chain, since HFC filters out branches conflicting with
the latest justified block. Therefore, we require that < n

3 validators are ever slashable for equivocation for
all of the properties which we are going to prove. As already mentioned, to avoid stating it repeatedly, we
further restrict η-compliant executions to those executions in which the assumption holds.

Our single slot finality protocol implemented in Algorithm 2 uses the HFC fork-choice function, dealing
with checkpoints and justifications. However, one could implement it using also different fork-choice functions.
In particular, we show that by substituting HFC with RLMD-GHOST (with equal expiration period η),
i.e., if we ignore justifications and consider the vanilla fork-choice function introduced by D’Amato and
Zanolini [7], then the resulting protocol is equivalent to the RLMD-GHOST protocol with fast confirmation
(Appendix B [7]). This because FFG votes have no effect at all, and as such it is η-reorg-resilient, and
η-dynamically-available. Moreover, the following two results about fast confirmations (Appendix B [7]) also
apply.

Theorem 1 (Reorg resilience of fast confirmations). Let us consider an η-compliant execution with GST = 0.
A block fast confirmed by an honest validator at a slot t is always in the canonical chain of all active validators
at rounds ≥ 4∆(t+ 1) + ∆.

Theorem 2 (Liveness of fast confirmations). An honest proposal B from a slot t in which |Ht| ≥
2
3n is fast

confirmed by all active validators at round 4∆t+∆.

We show that, under synchrony, i.e., with GST = 0, these properties are preserved by our justification-
respecting protocol, which uses HFC instead. To do so, we show that for every η-compliant execution,

10

Algorithm 2 using FC = RLMD-GHOST and Algorithm 2 using FC = HFC are equivalent, i.e., the sequence
of outputs of Algorithm 2 is the same regardless of which fork-choice function is used. All properties of
Algorithm 2 with FC = RLMD-GHOST in such η-compliant executions then also apply to Algorithm 2
with FC = HFC. In particular, it is also η-reorg-resilient and η-dynamically-available, and it also satisfies
reorg resilience and liveness of fast confirmations, i.e., Theorems 1 and Theorem 2 hold.

Theorem 3 (Execution equivalence). Let us consider an η-compliant execution with GST = 0 and with
Algorithm 2 using FC = HFC. Furthermore, let us consider the same execution, with the same adversarial
strategy and randomness, with Algorithm 2 using FC = RLMD-GHOST. The sequence of outputs of the two
algorithms correspond exactly.

Proof. Since the only difference between the two protocols is the fork-choice function FC, the sequences of
outputs correspond as long as the outputs of HFC and RLMD-GHOST obtained by active validators are
always the same in the two executions. FC is used only twice in Algorithm 2, in Line 9 for proposing, and in
Lines 13-14, with the same input, for broadcasting a head-vote. We are going to prove by induction that
the canonical chain of an active validator at any voting round is the same in both executions. Since Line 13
sets chi ← FC(Vi, t), and this value is the same as in Line 14, we only need to show that the fork-choice output
in Line 9 coincides in the two executions as well. In Line 14, an honest validator uses the fork-choice output
to construct their head-votes, so head-votes correspond in both executions. Moreover, the view-merge
property applies in both executions, so honestly proposed blocks correspond to the honest head-votes from
their slot. Therefore, head-votes coinciding in the two executions implies that honestly proposed blocks
coincide as well. Since honestly proposed blocks extend the output of the fork-choice at Line 9, this output
is then also the same in both executions, completing the proof. We now carry out the induction.

Induction hypothesis: At any slot t′ ≤ t and for r = 4∆t′ + ∆, chri coincides in both executions, for
any active validator i.

Base case: In rounds [0,∆], the two executions are exactly the same, because the only justified checkpoint
is Bgenesis, so HFC = RLMD-GHOST. Therefore, the statement holds for t = 0.

Inductive step: Suppose now that the statement holds for t, and consider round r = 4∆(t + 1) + ∆.
Consider an active validator vi with view Vi at round r, and latest justified block B = LJ(Vi). Let t′

be minimal such that there exists a justified checkpoint C = (B, t′), i.e., slot t′ is the first slot in which
block B was justified. The supermajority link with target C contains at least one FFG vote from an honest
validator vk. By minimality of t′, B could not have been already justified in the view of vk when broadcasting
an FFG vote at slot t′. Therefore, by Lines 22-23 of Algorithm 2, it must be the case that B ≺ chAvak at
round 4∆t′ + 2∆, i.e., that it had been confirmed by vk. If it was fast confirmed at a slot ≤ t′, then, in the

execution with FC = RLMD-GHOST, Theorem 1 implies that B ≺ ch
r′

j for all active validators vj at any

round r′ ≥ 4∆(t′ + 1) + ∆, and so in particular that B ≺ ch
r
i , since t > t′. If instead B ≺ ch

⌈κ
k at round

4∆t′ + 2∆, i.e., B is confirmed by vk due to being κ-deep in its canonical chain, then with overwhelming
probability there exists a pivot slot t′′ ∈ [t′ − κ, t′) (Lemma 3 [7]), with proposed block B′. In the execution

with FC = RLMD-GHOST, η-reorg-resilience then implies that B′ ≺ ch
r′

j for all active validators vj at any

round r′ ≥ 4∆t′′ +∆. In particular, B′ ≺ ch
r′

k at round r′ = 4∆t′ + 2∆, and B′ ≺ ch
r
i . The former implies

B ≺ B′, since B.t ≤ t′ − κ ≤ B′.t, and we then have B ≺ B′ ≺ ch
r
i .

Anyway, regardless of how B has been confirmed by vk, we have B ≺ ch
r
i . Therefore, LJ(Vi) = B ≺

RLMD-GHOST(Vi, t+1), which in turn impliesRLMD-GHOST(Vi, t+1) = RLMD-GHOST ◦ FILFFG(Vi, t+
1) = HFC(Vi, t+1). Therefore, after vi updates its canonical chain chi at round r by setting chi ← FC(V , t+1),
with FC dependent on the execution, chi is the same in both executions.

6.2 Partial synchrony

Throughout this section we assume that f < n
3 . First, we prove that the finalized chain is accountably safe,

exactly as done in Casper [3]. Then, we show that honest proposals made after max(GST,GAT) + ∆ are
justified within their proposal slot, which implies liveness of the finalized chain.

Theorem 4 (Accountable safety). The finalized chain chFin is accountably safe, i.e., two conflicting finalized
blocks imply that at least n

3 adversarial validators can be detected to have violated either E1 or E2.

11

Proof. We assume throughout that there are no double justifications, i.e., there are no checkpoints C 6= C′

with C.t = C′.t, and we refer to this as the non-equivocation assumption. If that’s not the case, clearly
≥ n

3 validators are slashable for violating E1. Consider two conflicting finalized blocks B and B′. By
definition, there are also finalized checkpoints C and C′ with B = C.B, B′ = C′.B. Say C is finalized by
the chain of supermajority links (Bgenesis, 0) → C1 · · · → Ck = C → Ck+1, with Ck+1.t = C.t + 1, and
C′ by the chain (Bgenesis, 0) → C′1 · · · → C

′
k′ = C′ → C′k′+1, with C

′
k′+1.t = C′.t + 1. Let ti = Ci.t, and

t′i = C
′
i.t. By the non-equivocation assumption, tk 6= t′k, and without loss of generality we take tk < t′k. Let

j = min{i ≤ k′ : tk < t′i}, so tk < t′j ≤ t′k′ , and t′j−1 ≤ tk by minimality of t′j . By the non-equivocation
assumption, t′j = tk+1 implies that Ck+1 = C′j. We then have B = C.B ≺ Ck+1.B = C′j .B ≺ C

′.B = B′,
contradicting that B and B′ are conflicting. Therefore, t′j > tk + 1 = tk+1 as well. Similarly, t′j−1 < tk.
Therefore, we have t′j−1 < tk < tk+1 < t′k, i.e., C

′
j−1.t < Ck.t < Ck+1.t < C′j .t. The intersection of the two

sets of voters of the supermajority links Ck → Ck+1 and C′j−1 → C
′
j contains at least n

3 validators, which are
then slashable for violating E2.

Lemma 2. If an honest proposer vp proposes a block B at a slot t after max(GST,GAT) +∆, and the latest
justified checkpoint in the view of the proposer is LJ p, then the checkpoint (B, t) is justified in all honest
views at round 4∆t+ 3∆, by supermajority link LJ p → (B, t).

Proof. Since t is after GAT+∆, all > 2
3n honest validators are awake since at least round 4∆t−∆, so at slot t

they have completed the joining protocol and are active. Moreover, the view-merge property (Lemma 1)
applies to all of them. Consider now an honest validator vi. By the view-merge property, validator vi
broadcasts a head-vote for B at round 4∆t+∆. Also by the view-merge property, LJ i = LJ p at round
4∆t+∆, but LJ i does not change until round 4∆t+3∆, since Vi does not. Therefore, LJ i = LJ p at round
4∆+2∆. By that round, all ≥ 2

3 honest head-votes for B are received by all honest validators, including vi.
Since also B ≺ chi, vi fast confirms B, and thus broadcasts an FFG vote LJ i → (B, t) = LJ p → (B, t). All
honest validators receive such votes by round 4∆t + 3∆, and merge them into their view then. Therefore,
checkpoint (B, t) is justified in all honest views at that round.

Theorem 5 (Liveness). Consider two consecutive slots t and t+1 with honest proposers after max(GST,GAT)+
4∆. The block B proposed at slot t is finalized at the end of slot t+ 1.

Proof. By Lemma 2, checkpoint (B, t) is justified in all honest views at round 4∆t + 3∆. Since at the
beginning of slot t+ 1 there cannot be any justified checkpoint with slot > t, and there cannot be any other
justified checkpoint with slot t, (B, t) is therefore the latest justified block in the view of the proposer of slot
t + 1. B is then canonical in its view, and it proposes a block B′ which extends B. Again by Lemma 2,
(B′, t+1) is justified in all honest views at round 4∆(t+1)+∆, by the supermajority link (B, t)→ (B′, t+1).
Therefore, B is finalized in all honest views.

7 Single slot finality

The protocol implemented in Algorithm 2 is a an η-secure ebb-and-flow protocol which (at best) finalizes a
block in every slot, but it does not achieve single slot finality, i.e., it cannot finalize a proposal within its
proposal slot. At best, it lags behind by one slot, finalizing a proposal from slot t at the end of slot t + 1.
A straightforward extension of our protocol which achieves single slot finality is one with 5∆ rounds per
slot, allowing for an additional FFG voting phase. This would be very costly in Ethereum, for two reasons.
First, it would in practice significantly increase the slot time, because each voting round requires aggregating
hundreds of thousands (if not millions) of BLS signatures, likely requiring a lengthier multi-step aggregation
process. Moreover, it would be expensive in terms of bandwidth consumption and computation, because
such votes would have to all be gossiped and verified by each validator, costly even if already aggregated.
For these reasons, we describe here an alternative way to enhance to protocol for the purpose of achieving
single slot finality, without suffering from the drawbacks just described. We introduce a new type of message,
acknowledgment, and a new slashing condition alongside it. Acknowledgments do not influence the protocol in
any way, except in case of slashing, and are mainly intended to be consumed by external observers which want
to have the earliest possible finality guarantees. Therefore, they do not need to be gossiped to and verified by
all validators. They can then simply be gossiped in smaller sub-networks (similar to the attestation subnets

12

which Ethereum employs today), requiring limited bandwidth and verification resources. If an observer wants
to have faster finality guarantees than they could have by simply following the chain or listening to the global
gossip, they can opt to participate in all such sub-networks, and collect all acknowledgments. As doing so is
permissionless, it can also be expected that aggregate acknowledgments, or equivalent proofs, might become
available through some other channels.

Acknowledgment. An acknowledgment is a tuple [Ack, C, t, v], where C is a checkpoint with C.t = t.
We also refer to this as an acknowledgment of C. A supermajority acknowledgment of C is a set of ≥ 2

3n

distinct acknowledgments of C. At round 4∆t+ 3∆, after merging the buffer Bi, validator vi broadcasts the
acknowledgment [Ack,LJ i, t, vi] if LJ i.t = t, i.e., if LJ i has been justified in the current slot. An observer
which receives a supermajority acknowledgment of a justified checkpoint C may consider C to be finalized.

Slashing rule for finality voting. When validator vi broadcasts an acknowledgment of (C, t), it acknowl-
edges that, at the end of slot t, it knows about C being justified. Since the FFG voting rules prescribe that
the source of an FFG vote should be the latest known justified checkpoint, subsequent FFG votes with a
source whose slot is < t constitute a provable violation, which is analogous to surround voting. Accord-
ingly, we formulate a third slashing rule, which ensures that finality via a supermajority acknowledgment is
accountably safe. In particular, validator vi is slashable for an FFG vote (C1, C2) and an acknowledgment
(C, t), if they satisfy E3, i.e., C1.t < C.t < C2.t. In other words, the link C1 → C2 surrounds the acknowledged
checkpoint.

Theorem 6 (Accountable safety with acknowledgments). The finalized chain is accountably safe even when
it is updated via acknowledgments as well, i.e., two conflicting finalized checkpoints imply that more than n

3
adversarial validators can be detected to have violated E1, E2, or E3.

Proof. The proof largely follows that of Theorem 4. We again consider two conflicting finalized blocks B and
B′, and corresponding finalized checkpoints C and C′. Regardless of whether finalization is through a super-
majority link or a supermajority acknowledgment, C and C′ have to be justified, by chains of supermajority
links (Bgenesis, 0)→ C1 · · · → Ck = C and (Bgenesis, 0)→ C′1 · · · → C

′
k′ = C′. Let ti = Ci.t, and t′i = C

′
i.t. By the

non-equivocation assumption considered in Theorem 4, we again have tk 6= t′k, and without loss of generality
we take tk < t′k. As before, we let j = min{i ≤ k′ : tk < t′i}, so tk < t′j ≤ t′k′ , and t′j−1 ≤ tk by minimality of
t′j . Moreover, also by the non-equivocation assumption, t′j−1 < tk. If C is finalized through a supermajority
link, the proof of Theorem 4 already shows that at least n

3 validators must have violated E2, and it is still
applicable here because it does not use the last supermajority link in the chain finalizing C′ (which may or
may not exist here). If instead C is finalized through a supermajority acknowledgment, i.e., there are 2

3n

acknowledgments of C, then at least n
3 validators have violated E3, because C′j−1.t < C.t < C

′
j .t.

Theorem 7 (Single Slot Finality). An honest proposal from a slot t after max(GST,GAT) + 4∆ is finalized
in round 4∆(t+ 1) by a supermajority acknowledgment.

Proof. Say the honestly proposed block is B. By Lemma 2, checkpoint C = (B, t) is justified in all honest
views at round 4∆t+ 3∆. Therefore, all honest validators broadcast an acknowledgment of C. Any observer
which listens for acknowledgments would receive all such messages by rounds 4∆(t+1), and thus possesses a
supermajority acknowledgment of C. Such observer may then consider C, and thus also B, to be finalized.

8 Conclusions

In this work, we have made significant strides towards realizing a secure and reorg-resilient ebb-and-flow
protocol that has the potential to replace Ethereum’s current consensus protocol, Gasper. We have provided
a comprehensive analysis and modifications to D’Amato and Zanolini’s RLMD-GHOST protocol, integrating
it with a partially synchronous finality gadget. In particular, our protocol introduces a novel approach for
achieving single slot finality.

Another significant contribution of our work lies in the expansion of the generalized sleepy model intro-
duced by D’Amato and Zanolini. Our generalized partially synchronous sleepy model introduces stronger
constraints related to the adversary’s corruption and sleepiness power and incorporates the concept of partial

13

synchrony. This extension not only enhances the original model but also provides a generalized framework
suitable for a wider array of practical scenarios.

However, despite the security guarantees of our protocol, we acknowledge that it is not (yet) practical
for real-world implementation. This challenge is due to the current structure of Ethereum, which employs a
large pool of validators. Requiring every validator to vote at each slot would necessitate extensive message
exchanges – a process that is far from optimal given the scale of Ethereum’s network. Therefore, while our
current findings represent a crucial stride towards an improved consensus protocol, they also highlight the
need for additional research. Specifically, we need to focus on how we can refine the voting mechanism to
better manage and aggregate the messages involved in this process.

References

[1] Aditya Asgaonkar. Remove equivocating validators from fork choice consideration. URL:
https://github.com/ethereum/consensus-specs/pull/2845.

[2] Vitalik Buterin. Paths toward single-slot finality, 2023. URL:
https://notes.ethereum.org/@vbuterin/single_slot_finality.

[3] Vitalik Buterin and Virgil Griffith. Casper the friendly finality gadget. CoRR, abs/1710.09437, 2017.
URL: http://arxiv.org/abs/1710.09437, arXiv:1710.09437.

[4] Vitalik Buterin, Diego Hernandez, Thor Kamphefner, Khiem Pham, Zhi Qiao, Danny Ryan, Juhyeok
Sin, Ying Wang, and Yan X Zhang. Combining GHOST and Casper. 2020.

[5] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. In Margo I. Seltzer and Paul J.
Leach, editors, Proceedings of the Third USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI), New Orleans, Louisiana, USA, February 22-25, 1999, pages 173–186. USENIX
Association, 1999.

[6] Francesco D’Amato, Joachim Neu, Ertem Nusret Tas, and David Tse. No more attacks on proof-of-stake
ethereum? CoRR, abs/2209.03255, 2022. URL: https://doi.org/10.48550/arXiv.2209.03255.

[7] Francesco D’Amato and Luca Zanolini. Recent latest message driven ghost: Balancing dynamic avail-
ability with asynchrony resilience, 2023. URL: https://arxiv.org/abs/2302.11326.

[8] Cynthia Dwork, Nancy A. Lynch, and Larry J. Stockmeyer. Consensus in the presence of partial
synchrony. J. ACM, 35(2):288–323, 1988.

[9] Seth Gilbert and Nancy A. Lynch. Brewer’s conjecture and the feasibility of consistent, available,
partition-tolerant web services. SIGACT News, 33(2):51–59, 2002.

[10] Daniel Kane, Andreas Fackler, Adam Gagol, and Damian Straszak. Highway: Efficient consensus
with flexible finality. CoRR, abs/2101.02159, 2021. URL: https://arxiv.org/abs/2101.02159,
arXiv:2101.02159.

[11] Andrew Lewis-Pye and Tim Roughgarden. Resource pools and the CAP theorem. CoRR,
abs/2006.10698, 2020. URL: https://arxiv.org/abs/2006.10698.

[12] Dahlia Malkhi, Atsuki Momose, and Ling Ren. Byzantine consensus under fully fluctuating participation.
IACR Cryptol. ePrint Arch., page 1448, 2022.

[13] Atsuki Momose and Ling Ren. Constant latency in sleepy consensus. In Heng Yin, Angelos Stavrou, Cas
Cremers, and Elaine Shi, editors, Proceedings of the 2022 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2022, Los Angeles, CA, USA, November 7-11, 2022, pages 2295–2308.
ACM, 2022.

[14] Joachim Neu, Ertem Nusret Tas, and David Tse. A balancing at-
tack on Gasper, the current candidate for Eth2’s beacon chain. URL:
https://ethresear.ch/t/a-balancing-attack-on-gasper-the-current-candidate-for-eth2s-beacon-chain/8079.

14

https://github.com/ethereum/consensus-specs/pull/2845
https://notes.ethereum.org/@vbuterin/single_slot_finality
http://arxiv.org/abs/1710.09437
http://arxiv.org/abs/1710.09437
https://doi.org/10.48550/arXiv.2209.03255
https://arxiv.org/abs/2302.11326
https://arxiv.org/abs/2101.02159
http://arxiv.org/abs/2101.02159
https://arxiv.org/abs/2006.10698
https://ethresear.ch/t/a-balancing-attack-on-gasper-the-current-candidate-for-eth2s-beacon-chain/8079

[15] Joachim Neu, Ertem Nusret Tas, and David Tse. Ebb-and-flow protocols: A resolution of the availability-
finality dilemma. In 42nd IEEE Symposium on Security and Privacy, SP 2021, San Francisco, CA, USA,
24-27 May 2021, pages 446–465. IEEE, 2021.

[16] Rafael Pass and Elaine Shi. The sleepy model of consensus. In ASIACRYPT (2), volume 10625 of
Lecture Notes in Computer Science, pages 380–409. Springer, 2017.

[17] Yonatan Sompolinsky and Aviv Zohar. Secure high-rate transaction processing in Bitcoin. In Interna-
tional Conference on Financial Cryptography and Data Security, pages 507–527. Springer, 2015.

[18] Vlad Zamfir. Casper the friendly ghost. a correct-by-construction blockchain consensus protocol. URL:
https://github.com/ethereum/research/blob/master/papers/cbc-consensus/AbstractCBC.pdf.

15

https://github.com/ethereum/research/blob/master/papers/cbc-consensus/AbstractCBC.pdf

	Introduction
	Related works
	Model and Preliminary Notions
	System model
	Validator internals
	Security

	Propose-vote-merge protocols
	Protocol specification
	Data structures
	Confirmation rule
	FFG component
	Voting
	Protocol execution

	Analysis
	Synchrony
	Partial synchrony

	Single slot finality
	Conclusions

