Abstract
Recently, with the increasing use of social networks, services, and computers in general plus the enhanced capabilities of remote working, especially during quarantine periods due to Covid-19, social engineering attacks are a growing phenomenon. These attacks are, nowadays, the most common, since no matter how protected an information system is from security attacks, the weakest link is the human factor. As such, it is imperative to address and prevent such attacks. This paper reviews the most common social engineering attack prevention and protection methods and classifies them based on various criteria. Based on the analysis, it identifies the most effective methods in their protection degree, while it supplies some challenges to maximise such degree.
Supported by organization x.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Klimburg-Witjes, N., Wentland, A.: Hacking humans? Social engineering and the construction of the “deficient user’’ in cybersecurity discourses. Sci. Technol. Hum. Values 46, 1316–1339 (2021)
Khalid, A., Nazir, M., Hussain, S., Asim, M.: A comprehensive review of social engineering attacks and defense mechanisms. J. Inf. Secur. (2016)
Heartfield, R., Loukas, G.: A taxonomy of attacks and a survey of defence mechanisms for semantic social engineering attacks. ACM Comput. Surv. 48(3), 1–39 (2016). https://doi.org/10.1145/2835375
Odeh, A.E.N.A., Eleyan, D.: A survey of social engineering attacks: detection and prevention tools (2021)
Aldawood, H., Skinner, G.: Reviewing cyber security social engineering training and awareness programs—pitfalls and ongoing issues. Fut. Internet 11(3), 73 (2019). https://doi.org/10.3390/fi11030073
Greamo, C., Ghosh, A.: Sandboxing and virtualization: modern tools for combating malware. IEEE Secur. Priv. 9(2), 79–82 (2011)
Ghafir, I., Prenosil, V., Svoboda, J., Hammoudeh, M.: A survey on network security monitoring systems, pp. 77–82, August 2016
Subha, T., Jayashri, S.: Efficient privacy preserving integrity checking model for cloud data storage security. In: 2016 Eighth International Conference on Advanced Computing (ICoAC), pp. 55–60 (2017)
Xue, M., Yuan, C., Wu, H., Zhang, Y., Liu, W.: Machine learning security: threats, countermeasures, and evaluations. IEEE Access 8, 74720–74742 (2020)
Samakovitis, G., Petridis, M., Lansley, M., Polatidis, N., Kapetanakis, S., Amin, K.: Seen the villains: detecting social engineering attacks using case-based reasoning and deep learning, July 2019
Sedjelmaci, H., Senouci, S.-M., Ansari, N., Boualouache, A.: A trusted hybrid learning approach to secure edge computing. IEEE Consum. Electron. Mag. 11(3), 30–37 (2022)
Krombholz, K., Hobel, H., Donko-Huber, M., Weippl, E.: Advanced social engineering attacks. J. Inf. Secur. Appl. 22, 10 (2014)
Peltier, T.R.: Information Security Policies, Procedures, and Standards: Guidelines for Effective Information Security Management (2001)
Frauenstein, E.D., von Solms, R.: An enterprise anti-phishing framework, March 2011
Kumaraguru, P.: PhishGuru: a system for educating users about semantic attacks, p. 199, April 2009
Arachchilage, N.A.G., Love, S., Scott, M.: Designing a mobile game to teach conceptual knowledge of avoiding ‘phishing attacks’. Int. J. e-Learn. Secur. 2(1), 127–132 (2012). https://doi.org/10.20533/ijels.2046.4568.2012.0016
Lin, E., Greenberg, S., Trotter, E., Ma, D., Aycock, J.: Does domain highlighting help people identify phishing sites?, pp. 2075–2084, May 2011
Lee, J., Bauer, L., Mazurek, M.: Studying the effectiveness of security images in internet banking. IEEE Internet Comput. 13 (2015)
Kritzinger, E., von Solms, S.H.: Cyber security for home users: a new way of protection through awareness enforcement. Comput. Secur. 29(8), 840–847 (2010)
Anderson, B., Kirwan, B., Jenkins, J., Eargle, D., Howard, S., Vance, A.: How polymorphic warnings reduce habituation in the brain: insights from an fMRI Study, pp. 2883–2892, April 2015
Barth, A., Reis, C.: The security architecture of the chromium browser (2009)
Mozilla Wiki-Security/Sandbox (2015)
The chromium projects-sandbox (2015)
Lu, L., Yegneswaran, V., Porras, P., Lee, W.: BLADE: an attack-agnostic approach for preventing drive-by malware infections, pp. 440–450, October 2010
Bianchi, A., Corbetta, J., Invernizzi, L., Fratantonio, Y., Kruegel, C., Vigna, G.: What the app is that? Deception and countermeasures in the android user interface, pp. 931–948, July 2015
Desmond, R.A.B., Richards, J., Lowe-Norris, A.G.: Active Directory, 5th edn. (2013)
Motiee, S., Hawkey, K., Beznosov, K.: Do windows users follow the principle of least privilege? Investigating user account control practices, July 2010
Salem, M.B., Stolfo, S.J.: Modeling user search behavior for masquerade detection. In: Sommer, R., Balzarotti, D., Maier, G. (eds.) RAID 2011. LNCS, vol. 6961, pp. 181–200. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23644-0_10
Lu, L., Perdisci, R., Lee, W.: SURF: detecting and measuring search poisoning, pp. 467–476, October 2011
Li, Z., Alrwais, S., Xie, Y., Yu, F., Wang, X.: Finding the linchpins of the dark web: a study on topologically dedicated hosts on malicious web infrastructures, pp. 112–126, May 2013
Lee, S., Kim, J.: WARNINGBIRD: detecting suspicious URLs in Twitter stream, January 2012
Udzir, N., Samsudin, K.: Towards a dynamic file integrity monitor through a security classification. Int. J. New Comput. Archit. Appl. (IJNCAA) 3, 789–802 (2011)
Dhanalakshmi, R., Chellappan, C.: Detection and recognition of file masquerading for e-mail and data security. In: Meghanathan, N., Boumerdassi, S., Chaki, N., Nagamalai, D. (eds.) CNSA 2010. CCIS, vol. 89, pp. 253–262. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14478-3_26
Hara, M., Yamada, A., Miyake, Y.: Visual similarity-based phishing detection without victim site information, pp. 30–36, May 2009
Bhardwaj, T., Sharma, T.K., Pandit, M.R.: Social engineering prevention by detecting malicious URLs using artificial bee colony algorithm. In: Pant, M., Deep, K., Nagar, A., Bansal, J.C. (eds.) Proceedings of the Third International Conference on Soft Computing for Problem Solving. AISC, vol. 258, pp. 355–363. Springer, New Delhi (2014). https://doi.org/10.1007/978-81-322-1771-8_31
Singhal, P., Raul, N.: Malware detection module using machine learning algorithms to assist in centralized security in enterprise networks. Int. J. Netw. Secur. Appl. 4, 61–67 (2012)
Sandouka, H., Cullen, A., Mann, I.: Social engineering detection using neural networks, pp. 273–278, January 2009
Basnet, R., Mukkamala, S., Sung, A.H.: Detection of phishing attacks: a machine learning approach. In: Prasad, B. (eds.) Soft Computing Applications in Industry. Studies in Fuzziness and Soft Computing, vol. 226, pp. 373–383. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-77465-5_19
Raskin, V., Rayz, J., Hempelmann, C.: Ontological semantic technology for detecting insider threat and social engineering. In: Proceedings New Security Paradigms Workshop, September 2010
Xiang, G., Hong, J., Rose, C.P., Cranor, L.: CANTINA+: a feature-rich machine learning framework for detecting phishing web sites. ACM Trans. Inf. Syst. Secur. 14(2), 1–28 (2011)
Cova, M., Krügel, C., Vigna, G.: Detection and analysis of drive-by-download attacks and malicious JavaScript code, pp. 281–290, April 2010
Aggarwal, A., Rajadesingan, A., Kumaraguru, P.: PhishAri: automatic realtime phishing detection on Twitter. In: eCrime Researchers Summit, eCrime, January 2013
Stringhini, G., Thonnard, O.: That ain’t you: blocking spearphishing through behavioral modelling. In: Almgren, M., Gulisano, V., Maggi, F. (eds.) DIMVA 2015. LNCS, vol. 9148, pp. 78–97. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20550-2_5
Basit, A., Zafar, M., Liu, X., Javed, A.R., Jalil, Z., Kifayat, K.: A comprehensive survey of AI-enabled phishing attacks detection techniques. Telecommun. Syst. 76(1), 139–154 (2020). https://doi.org/10.1007/s11235-020-00733-2
Maurya, S., Jain, A.: Deep learning to combat phishing. J. Stat. Manag. Syst. 23, 07 (2020)
Subasi, A., Molah, E., Almkallawi, F., Chaudhery, T.J.: Intelligent phishing website detection using random forest classifier, pp. 1–5, November 2017
Abdelhamid, N., Thabtah, F., Abdel-jaber, H.: Phishing detection: a recent intelligent machine learning comparison based on models content and features, pp. 72–77, July 2017
Mao, J., et al.: Detecting phishing websites via aggregation analysis of page layouts. Procedia Comput. Sci. 129, 224–230 (2018)
Lansley, M., Polatidis, N., Kapetanakis, S.: SEADer: a social engineering attack detection method based on natural language processing and artificial neural networks. In: Nguyen, N.T., Chbeir, R., Exposito, E., Aniorté, P., Trawiński, B. (eds.) ICCCI 2019. LNCS (LNAI), vol. 11683, pp. 686–696. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-28377-3_57
Begum, A., Badugu, S.: A study of malicious URL detection using machine learning and heuristic approaches. In: Satapathy, S.C., Raju, K.S., Shyamala, K., Krishna, D.R., Favorskaya, M.N. (eds.) Advances in Decision Sciences, Image Processing, Security and Computer Vision. LAIS, vol. 4, pp. 587–597. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-24318-0_68
Chouhan, A.Y., Fatima, R., Liu, L., Yasin, A., Wang, J.: Contemplating social engineering studies and attack scenarios: a review study. Secur. Priv. 2, e73 (2019)
Al-Hamar, Y., Kolivand, H., Tajdini, M., Saba, T., Ramachandran, V.: Enterprise credential spear-phishing attack detection. Comput. Electr. Eng. 94, 107363 (2021)
Fatima, R., Chouhan, A.Y., Liu, L., Wang, J.: How persuasive is a phishing email? A phishing game for phishing awareness. J. Comput. Secur. 27, 1–32 (2019)
Chiew, K.L., Yong, K., Tan, C.C.L.: A survey of phishing attacks: their types, vectors and technical approaches. Exp. Syst. Appl. 106, 1–20 (2018)
Yao, W., Ding, Y., Li, X.: LogoPhish: a new two-dimensional code phishing attack detection method, pp. 231–236, December 2018
Mao, J., et al.: Phishing page detection via learning classifiers from page layout feature. EURASIP J. Wirel. Commun. Netw. 2019, 43 (2019). https://doi.org/10.1186/s13638-019-1361-0
Sahingoz, O., Buber, E., Demir, O., Diri, B.: Machine learning based phishing detection from URLs. Exp. Syst. Appl. 117, 345–357 (2019)
Adebowale, M., Lwin, K., Sanchez, E., Hossain, A.: Intelligent web-phishing detection and protection scheme using integrated features of images, frames and text. Exp. Syst. Appl. 115, 300–313 (2018)
Pandey, A., Gill, N., Sai Prasad Nadendla, K., Thaseen, I.S.: Identification of phishing attack in websites using random forest-SVM hybrid model. In: Abraham, A., Cherukuri, A.K., Melin, P., Gandhi, N. (eds.) ISDA 2018 2018. AISC, vol. 941, pp. 120–128. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-16660-1_12
Niranjan, A., Haripriya, D.K., Pooja, R., Sarah, S., Deepa Shenoy, P., Venugopal, K.R.: EKRV: ensemble of kNN and random committee using voting for efficient classification of phishing. In: Pati, B., Panigrahi, C.R., Misra, S., Pujari, A.K., Bakshi, S. (eds.) Progress in Advanced Computing and Intelligent Engineering. AISC, vol. 713, pp. 403–414. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-1708-8_37
Patil, V., Thakkar, P., Shah, C., Bhat, T., Godse, S.P.: Detection and prevention of phishing websites using machine learning approach, pp. 1–5, August 2018
Flowerday, S.: Information security policy development and implementation: a content analysis approach, July 2014
Lee, J., Bauer, L., Mazurek, M.L.: The effectiveness of security images in internet banking. IEEE Internet Comput. 19(1), 54–62 (2015)
Heartfield, R., Loukas, G.: A taxonomy of attacks and a survey of defence mechanisms for semantic social engineering attacks. ACM Comput. Surv. 48, 02 (2016)
Rifat, N., Ahsan, M., Chowdhury, M., Gomes, R.: BERT against social engineering attack: phishing text detection, pp. 1–6, May 2022
Wang, Z., Ren, Y., Zhu, H., Sun, L.: Threat detection for general social engineering attack using machine learning techniques, March 2022
Arrieta, A.B., et al.: Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion 58, 82–115 (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Kontogeorgopoulos, K., Kritikos, K. (2024). Overview of Social Engineering Protection and Prevention Methods. In: Katsikas, S., et al. Computer Security. ESORICS 2023 International Workshops. ESORICS 2023. Lecture Notes in Computer Science, vol 14398. Springer, Cham. https://doi.org/10.1007/978-3-031-54204-6_4
Download citation
DOI: https://doi.org/10.1007/978-3-031-54204-6_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-54203-9
Online ISBN: 978-3-031-54204-6
eBook Packages: Computer ScienceComputer Science (R0)