Skip to main content

Enhancing Knee Meniscus Damage Prediction from MRI Images with Machine Learning and Deep Learning Techniques

  • Conference paper
  • First Online:
ICT Innovations 2023. Learning: Humans, Theory, Machines, and Data (ICT Innovations 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1991))

Included in the following conference series:

  • 39 Accesses

Abstract

This paper investigates the application of machine learning and deep learning models to predict knee meniscus damage from magnetic resonance imaging (MRI) scans. We utilized the MRNet dataset, and processed it with different approaches, using a one-dimensional grayscale, RGB, and segmented images, complemented with features extracted using Histogram of Oriented Gradients (HOG) and Scale-Invariant Feature Transform (SIFT) techniques. Our objective was to evaluate whether a DL model could match or exceed the diagnostic performance of clinical experts such as general radiologists and orthopedic surgeons. Our findings demonstrate that our ML and DL models can predict meniscal tears with comparable accuracy to that of general medical doctors. This suggests that ML and DL models have potential to deliver rapid preliminary results post-MRI exams and augment the quality of MRI diagnoses, particularly in settings lacking specialist radiologists. Thus, integrating ML and DL models into clinical practice could enhance the quality and consistency of MRI interpretation for knee meniscus damage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://stanfordmlgroup.github.io/competitions/mrnet/.

References

  1. Corizzo, R., Dauphin, Y., Bellinger, C., Zdravevski, E., Japkowicz, N.: Explainable image analysis for decision support in medical healthcare. In: 2021 IEEE International Conference on Big Data (Big Data), pp. 4667–4674 (2021)

    Google Scholar 

  2. Maresova, P., et al.: Health-related ICT solutions of smart environments for elderly-systematic review. IEEE Access 8, 54574–54600 (2020)

    Article  Google Scholar 

  3. Ferreira, F., et al.: Experimental study on wound area measurement with mobile devices. Sensors 21(17), 5762 (2021)

    Article  Google Scholar 

  4. Fritz, B., Yi, P., Kijowski, R., Fritz, J.: Radiomics and deep learning for disease detection in musculoskeletal radiology: an overview of novel MRI- and CT-based approaches. Invest. Radiol. 58(1), 3–13 (2023)

    Article  Google Scholar 

  5. Hegde, A., George, R.M., Ranjith, H.: Detection and classification of knee osteoarthritis using texture descriptor algorithms. In: Intelligent Interactive Multimedia Systems for E-Healthcare Applications, pp. 151–166. Apple Academic Press (2022)

    Google Scholar 

  6. Senter, C., Hame, S.L.: Biomechanical analysis of tibial torque and knee flexion angle: implications for understanding knee injury. Sports Med. 36, 635–641 (2006)

    Article  Google Scholar 

  7. Lien-Iversen, T., Morgan, D.B., Jensen, C., Risberg, M.A., Engebretsen, L., Viberg, B.: Does surgery reduce knee osteoarthritis, meniscal injury and subsequent complications compared with non-surgery after ACL rupture with at least 10 years follow-up? A systematic review and meta-analysis. Br. J. Sports Med. 54(10), 592–598 (2020)

    Article  Google Scholar 

  8. Allum, R.: Complications of arthroscopic reconstruction of the anterior cruciate ligament. J. Bone Joint Surg. 85(1), 12–16 (2003)

    Article  Google Scholar 

  9. Renström, P.A.: Knee pain in tennis players. Clin. Sports Med. 14(1), 163–175 (1995)

    Article  Google Scholar 

  10. O’Brien, M.S., McDougall, J.J.: Age and frailty as risk factors for the development of osteoarthritis. Mech. Ageing Dev. 180, 21–28 (2019)

    Article  Google Scholar 

  11. Adams, B.G., Houston, M.N., Cameron, K.L.: The epidemiology of meniscus injury. Sports Med. Arthrosc. Rev. 29(3), e24–e33 (2021)

    Article  Google Scholar 

  12. Novriansyah, R., Kusuma, F.A.: Knee pain due to loose body in the knee joint: a case report in Dr. Kariadi general hospital Semarang. Med. Hospit.: J. Clin. Med. 9(3), 378–382 (2022)

    Google Scholar 

  13. Sharma, L.: Osteoarthritis of the knee. N. Engl. J. Med. 384(1), 51–59 (2021)

    Article  MathSciNet  Google Scholar 

  14. Paxton, E.S., Stock, M.V., Brophy, R.H.: Meniscal repair versus partial meniscectomy: a systematic review comparing reoperation rates and clinical outcomes. Arthrosc.: J. Arthrosc. Relat. Surg. 27(9), 1275–1288 (2011)

    Article  Google Scholar 

  15. Siouras, A., et al.: Knee injury detection using deep learning on MRI studies: a systematic review. Diagnostics 12(2), 537 (2022)

    Article  Google Scholar 

  16. Liu, F., et al.: Fully automated diagnosis of anterior cruciate ligament tears on knee MR images by using deep learning. Radiol.: Artif. Intell. 1(3), 180091 (2019)

    Google Scholar 

  17. Sayegh, E.T., Matzkin, E.: Classifications in brief: the international society of arthroscopy, knee surgery, and orthopaedic sports medicine classification of meniscal tears. Clin. Orthop. Relat. Res.® 480(1), 39–44 (2022)

    Google Scholar 

  18. Li, Z., et al.: Deep learning-based magnetic resonance imaging image features for diagnosis of anterior cruciate ligament injury. J. Healthc. Eng. 2021 (2021)

    Google Scholar 

  19. Petrovska, B., Zdravevski, E., Lameski, P., Corizzo, R., Štajduhar, I., Lerga, J.: Deep learning for feature extraction in remote sensing: a case-study of aerial scene classification. Sensors 20(14), 3906 (2020)

    Article  Google Scholar 

  20. Roblot, V., et al.: Artificial intelligence to diagnose meniscus tears on MRI. Diagn. Interv. Imaging 100(4), 243–249 (2019)

    Article  Google Scholar 

  21. Rizk, B., et al.: Meniscal lesion detection and characterization in adult knee MRI: a deep learning model approach with external validation. Phys. Med. 83, 64–71 (2021)

    Article  Google Scholar 

  22. Fritz, B., Fritz, J.: Artificial intelligence for MRI diagnosis of joints: a scoping review of the current state-of-the-art of deep learning-based approaches. Skeletal Radiol. 51(2), 315–329 (2022)

    Article  Google Scholar 

  23. Javed Awan, M., Mohd Rahim, M.S., Salim, N., Mohammed, M.A., Garcia-Zapirain, B., Abdulkareem, K.H.: Efficient detection of knee anterior cruciate ligament from magnetic resonance imaging using deep learning approach. Diagnostics 11(1) (2021)

    Google Scholar 

  24. Bien, N., et al.: Deep-learning-assisted diagnosis for knee magnetic resonance imaging: development and retrospective validation of MRNet. PLOS Med. 15(11), 1–19 (2018)

    Article  Google Scholar 

  25. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)

    Article  Google Scholar 

  26. Pape, J.-M., Klukas, C.: 3-D histogram-based segmentation and leaf detection for rosette plants. In: Agapito, L., Bronstein, M.M., Rother, C. (eds.) ECCV 2014. LNCS, vol. 8928, pp. 61–74. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16220-1_5

    Chapter  Google Scholar 

  27. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  28. Jain, A.K., Farrokhnia, F.: Unsupervised texture segmentation using gabor filters. Pattern Recogn. 24(12), 1167–1186 (1991)

    Article  Google Scholar 

  29. Grzegorowski, M., Zdravevski, E., Janusz, A., Lameski, P., Apanowicz, C., Slezak, D.: Cost optimization for big data workloads based on dynamic scheduling and cluster-size tuning. Big Data Res. 25, 100203 (2021)

    Article  Google Scholar 

Download references

Acknowledgments

This work is partilly funded by FCT/MEC through national funds and co-funded by FEDER—PT2020 partnership agreement under the project UIDB/50008/2020. This work is also funded by FCT/MEC through national funds and co-funded by FEDER—PT2020 partnership agreement under the project UIDB/00308/2020.

The work presented in this paper was partially financed by the University of Sts. Cyril and Methodius in Skopje, Macedonia, Faculty of Computer Science and Engineering.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eftim Zdravevski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kostadinov, M., Lameski, P., Kulakov, A., Pires, I.M., Coelho, P.J., Zdravevski, E. (2024). Enhancing Knee Meniscus Damage Prediction from MRI Images with Machine Learning and Deep Learning Techniques. In: Mihova, M., Jovanov, M. (eds) ICT Innovations 2023. Learning: Humans, Theory, Machines, and Data. ICT Innovations 2023. Communications in Computer and Information Science, vol 1991. Springer, Cham. https://doi.org/10.1007/978-3-031-54321-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-54321-0_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-54320-3

  • Online ISBN: 978-3-031-54321-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics