Skip to main content

Deep Stacking Ensemble Learning Applied to Profiling Side-Channel Attacks

  • Conference paper
  • First Online:
Smart Card Research and Advanced Applications (CARDIS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14530))

  • 78 Accesses

Abstract

Deep Learning is nowadays widely used by security evaluators to conduct side-channel attacks, especially in profiling attacks that allow a supervised learning phase. However, designing an efficient neural network model in a side-channel attack context can be a difficult task that may require a laborious hyperparameterization process. Hyperparameter selection is known to be a challenging problem in Deep Learning, while being a crucial factor for neural networks performances. Recent works investigate the so-called Deep Ensemble Learning in the side-channel context. It consists in using multiple neural networks in a single predictive task and aggregating the several predictions in an opportune way. The intuition behind is to use the power of numbers to improve the attack performance. In this work, we propose to use Stacking as an aggregation method, in which a meta-model is trained to learn the best way to combine the output class probabilities of the ensemble networks. Our proposal is supported by several experimental results, that allow to conclude that the use of Stacking can relieve the security evaluator from performing a fine hyperparameterization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    There are other ensemble methods, in particular the Boosting [9], which we have experimented without obtaining good enough performance for the considered datasets.

  2. 2.

    Other criteria has been tested during the experimental campaign, but the obtained results were less performant and uninteresting in our opinion. Thus, they have been omitted.

  3. 3.

    We also tried to train on the validation dataset, but the results were generally worse due to the lack of data. Results have thus been omitted.

References

  1. Acharya, R.Y., Ganji, F., Forte, D.: Information theory-based evolution of neural networks for side-channel analysis. IACR Trans. Cryptogr. Hardw. Embed. Syst. 401–437 (2023)

    Google Scholar 

  2. Ali, K.M., Pazzani, M.J.: On the link between error correlation and error reduction in decision tree ensembles (1995)

    Google Scholar 

  3. Benadjila, R., Prouff, E., Strullu, R., Cagli, E., Dumas, C.: Deep learning for side-channel analysis and introduction to ASCAD database. J. Cryptogr. Eng. 10(2), 163–188 (2020)

    Article  Google Scholar 

  4. Breiman, L.: Bagging predictors. Mach. Learn. 24, 123–140 (1996)

    Article  Google Scholar 

  5. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model. In: Joye, M., Quisquater, J.J. (eds.) Cryptographic Hardware and Embedded Systems – CHES 2004. CHES 2004. LNCS, vol. 3156, pp. 16–29. Springer, Berlin, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5_2

  6. Cagli, E., Dumas, C., Prouff, E.: Convolutional neural networks with data augmentation against jitter-based countermeasures: profiling attacks without pre-processing. In: Fischer, W., Homma, N. (eds.) Cryptographic Hardware and Embedded Systems – CHES 2017. CHES 2017. LNCS, vol. 10529, pp. 45–68. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66787-4_3

  7. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koc, C.K., Paar, C. (eds.) Cryptographic Hardware and Embedded Systems – CHES 2002. CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Berlin, Heidelberg (2003). https://doi.org/10.1007/3-540-36400-5_3

  8. Destouet, G., Dumas, C., Frassati, A., Perrier, V.: Wavelet scattering transform and ensemble methods for side-channel analysis. In: Bertoni, G.M., Regazzoni, F. (eds.) Constructive Side-Channel Analysis and Secure Design. COSADE 2020. LNCS, vol. 12244, pp. 71–89. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68773-1_4

  9. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997)

    Article  MathSciNet  Google Scholar 

  10. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: concrete results. In: Koc, C.K., Naccache, D., Paar, C. (eds.) Cryptographic Hardware and Embedded Systems – CHES 2001. CHES 2001. LNCS, vol. 2162, pp. 251–261. Springer, Berlin, Heidelberg (2001). https://doi.org/10.1007/3-540-44709-1_21

  11. Gao, F., Mao, B., Wu, L., Wang, Z., Mu, D., Hu, W.: Leveraging ensemble learning for side channel analysis on masked AES. In: 2021 7th International Conference on Computer and Communications (ICCC), pp. 267–271. IEEE (2021)

    Google Scholar 

  12. Hansen, L.K., Salamon, P.: Neural network ensembles. IEEE Trans. Pattern Anal. Mach. Intell. 12(10), 993–1001 (1990)

    Article  Google Scholar 

  13. Hernández-Lobato, D., Martínez-Muñoz, G., Suárez, A.: How large should ensembles of classifiers be? Pattern Recogn. 46(5), 1323–1336 (2013)

    Article  Google Scholar 

  14. Heuser, A., Zohner, M.: Intelligent machine homicide: breaking cryptographic devices using support vector machines. In: Schindler, W., Huss, S.A. (eds.) Constructive Side-Channel Analysis and Secure Design. COSADE 2012. LNCS, vol. 7275, pp. 249–264. Springer, Berlin, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29912-4_18

  15. Kim, J., Picek, S., Heuser, A., Bhasin, S., Hanjalic, A.: Make some noise. unleashing the power of convolutional neural networks for profiled side-channel analysis. IACR Trans. Cryptogr. Hardw. Embed. Syst. 148–179 (2019)

    Google Scholar 

  16. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (eds.) Advances in Cryptology – CRYPTO’ 99. CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Berlin, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_25

  17. Lerman, L., Bontempi, G., Markowitch, O.: A machine learning approach against a masked AES: reaching the limit of side-channel attacks with a learning model. J. Cryptogr. Eng. 5, 123–139 (2015)

    Article  Google Scholar 

  18. Maghrebi, H., Portigliatti, T., Prouff, E.: Breaking cryptographic implementations using deep learning techniques. In: Carlet, C., Hasan, M., Saraswat, V. (eds.) Security, Privacy, and Applied Cryptography Engineering. SPACE 2016. LNCS, vol. 10076, pp. 3–26. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49445-6_1

  19. Opitz, D., Maclin, R.: Popular ensemble methods: an empirical study. J. Artif. Intell. Res. 11, 169–198 (1999)

    Article  Google Scholar 

  20. Perin, G., Chmielewski, Ł., Picek, S.: Strength in numbers: improving generalization with ensembles in machine learning-based profiled side-channel analysis. IACR Trans. Cryptogr. Hardw. Embed. Syst. 337–364 (2020)

    Google Scholar 

  21. Picek, S., Heuser, A., Jovic, A., Bhasin, S., Regazzoni, F.: The curse of class imbalance and conflicting metrics with machine learning for side-channel evaluations. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019(1), 1–29 (2019)

    Google Scholar 

  22. Rijsdijk, J., Wu, L., Perin, G., Picek, S.: Reinforcement learning for hyperparameter tuning in deep learning-based side-channel analysis. IACR Trans. Cryptogr. Hardw. Embed. Syst. 677–707 (2021)

    Google Scholar 

  23. Robissout, D., Bossuet, L., Habrard, A., Grosso, V.: Improving deep learning networks for profiled side-channel analysis using performance improvement techniques. ACM J. Emerg. Technol. Comput. Syst. (JETC) 17(3), 1–30 (2021)

    Article  Google Scholar 

  24. Standaert, F.X., Malkin, T.G., Yung, M.: A unified framework for the analysis of side-channel key recovery attacks. In: Joux, A. (eds.) Advances in Cryptology – EUROCRYPT 2009. EUROCRYPT 2009. LNCS, vol. 5479, pp. 443–461. Springer, Berlin, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01001-9_26

  25. Wolpert, D.H.: Stacked generalization. Neural Netw. 5(2), 241–259 (1992)

    Article  Google Scholar 

  26. Wu, L., Perin, G., Picek, S.: I choose you: automated hyperparameter tuning for deep learning-based side-channel analysis. IEEE Trans. Emerg. Top. Comput. (2022)

    Google Scholar 

  27. Zaid, G., Bossuet, L., Habrard, A., Venelli, A.: Methodology for efficient CNN architectures in profiling attacks. IACR Trans. Cryptogr. Hardw. Embed. Syst. 1–36 (2020)

    Google Scholar 

  28. Zaid, G., Bossuet, L., Habrard, A., Venelli, A.: Efficiency through diversity in ensemble models applied to side-channel attacks:-a case study on public-key algorithms-. IACR Trans. Cryptogr. Hardw. Embed. Syst. 60–96 (2021)

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Defense Innovation Agency (AID) from the french ministry of armed forces.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorian Llavata .

Editor information

Editors and Affiliations

A Weak models

A Weak models

(See Fig. 7).

Fig. 7.
figure 7

Search space for weak models.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Llavata, D., Cagli, E., Eyraud, R., Grosso, V., Bossuet, L. (2024). Deep Stacking Ensemble Learning Applied to Profiling Side-Channel Attacks. In: Bhasin, S., Roche, T. (eds) Smart Card Research and Advanced Applications. CARDIS 2023. Lecture Notes in Computer Science, vol 14530. Springer, Cham. https://doi.org/10.1007/978-3-031-54409-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-54409-5_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-54408-8

  • Online ISBN: 978-3-031-54409-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics