Abstract
We describe a fault attack against the deterministic variant of the \(\textsc {Falcon}\) signature scheme. It is the first fault attack that exploits specific properties of deterministic \(\textsc {Falcon}\). The attack works under a very relaxed and realistic single fault random model. The main idea is to inject a fault into the pseudo-random generator of the pre-image trapdoor sampler, generate different signatures for the same input, find reasonably short lattice vectors this way, and finally use lattice reduction techniques to obtain the private key. We investigate the relationship between fault location, the number of faults, computational effort for a possibly remaining exhaustive search step and success probability.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
In practice, the coefficients of the polynomials f and g are generated following a discrete Gaussian distribution with center 0 and standard deviation \(\sigma =1.17\sqrt{q/2n}\).
- 2.
commit 02a2a64c44147775e6870b2d957f2cfda1437895.
References
Akleylek, S., Bindel, N., Buchmann, J.A., Krämer, J., Marson, G.A.: An efficient lattice-based signature scheme with provably secure instantiation. In: Pointcheval, D., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2016. LNCS, vol. 9646, pp. 44–60. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-319-31517-1_3
Albrecht, M.R., Ducas, L., Herold, G., Kirshanova, E., Postlethwaite, E.W., Stevens, M.: The general sieve kernel and new records in lattice reduction. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part II. LNCS, vol. 11477, pp. 717–746. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-030-17656-3_25
Ambrose, C., Bos, J.W., Fay, B., Joye, M., Lochter, M., Murray, B.: Differential attacks on deterministic signatures. In: Smart, N.P. (ed.) CT-RSA 2018. LNCS, vol. 10808, pp. 339–353. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-319-76953-0_18
Barenghi, A., Pelosi, G.: A note on fault attacks against deterministic signature schemes. In: Ogawa, K., Yoshioka, K. (eds.) IWSEC 16. LNCS, vol. 9836, pp. 182–192. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-319-44524-3_11
Bindel, N., et al.: qTESLA. Technical report, National Institute of Standards and Technology (2017). https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
Bindel, N., Buchmann, J., Krämer, J.: Lattice-based signature schemes and their sensitivity to fault attacks. In: 2016 Workshop on Fault Diagnosis and Tolerance in Cryptography, FDTC 2016, Santa Barbara, CA, USA, 16 August 2016, pp. 63–77. IEEE Computer Society (2016). https://doi.org/10.1109/FDTC.2016.11
Bruinderink, L.G., Pessl, P.: Differential fault attacks on deterministic lattice signatures. IACR TCHES 2018(3), 21–43 (2018). https://doi.org/10.13154/tches.v2018.i3.21-43. https://tches.iacr.org/index.php/TCHES/article/view/7267
Cao, W., Shi, H., Chen, H., Chen, J., Fan, L., Wu, W.: Lattice-based fault attacks on deterministic signature schemes of ECDSA and EDDSA. In: Galbraith, S.D. (ed.) Topics in Cryptology - CT-RSA 2022. Lecture Notes in Computer Science, vol. 13161, pp. 169–195. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-95312-6_8
Chuengsatiansup, C., Prest, T., Stehlé, D., Wallet, A., Xagawa, K.: ModFalcon: compact signatures based on module NTRU lattices. Cryptology ePrint Archive, Report 2019/1456 (2019). https://eprint.iacr.org/2019/1456
Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and bimodal Gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 40–56. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_3
Ducas, L., Lyubashevsky, V., Prest, T.: Efficient identity-based encryption over NTRU lattices. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part II. LNCS, vol. 8874, pp. 22–41. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45608-8_2
Espitau, T., Fouque, P.A., Gérard, B., Tibouchi, M.: Loop-abort faults on lattice-based Fiat-Shamir and hash-and-sign signatures. In: Avanzi, R., Heys, H.M. (eds.) SAC 2016. LNCS, vol. 10532, pp. 140–158. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-319-69453-5_8
Espitau, T., et al.: Mitaka: a simpler, parallelizable, maskable variant of falcon. Cryptology ePrint Archive, Report 2021/1486 (2021). https://eprint.iacr.org/2021/1486
Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. Cryptology ePrint Archive, Report 2007/432 (2007). https://eprint.iacr.org/2007/432
Guillen, O.M., Gruber, M., De Santis, F.: Low-cost setup for localized semi-invasive optical fault injection attacks - how low can we go? In: Guilley, S. (ed.) COSADE 2017. LNCS, vol. 10348, pp. 207–222. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-64647-3_13
Güneysu, T., Lyubashevsky, V., Pöppelmann, T.: Practical lattice-based cryptography: a signature scheme for embedded systems. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 530–547. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33027-8_31
Hulsing, A., et al.: SPHINCS+. Technical report, National Institute of Standards and Technology (2022). https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
Lazar, D., Peikert, C., algoidan: Deterministic falcon implementation. https://github.com/algorand/falcon. Accessed 17 Nov 2022
Lu, X., Zhang, Z., Au, M.H.: Practical signatures from the partial Fourier recovery problem revisited: a provably-secure and Gaussian-distributed construction. In: Susilo, W., Yang, G. (eds.) ACISP 2018. LNCS, vol. 10946, pp. 813–820. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-319-93638-3_50
Lyubashevsky, V., et al.: CRYSTALS-DILITHIUM. Technical report, National Institute of Standards and Technology (2017). https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
Lyubashevsky, V., et al.: CRYSTALS-DILITHIUM. Technical report, National Institute of Standards and Technology (2022). https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
McCarthy, S., Howe, J., Smyth, N., Brannigan, S., O’Neill, M.: BEARZ attack FALCON: Implementation attacks with countermeasures on the FALCON signature scheme. Cryptology ePrint Archive, Report 2019/478 (2019). https://eprint.iacr.org/2019/478
NIST: NIST announces first four quantum-resistant cryptographic algorithms. https://www.nist.gov/news-events/news/2022/07/nist-announces-first-four-quantum-resistant-cryptographic-algorithms (2022). Accessed 21 Dec 2022
Poddebniak, D., Somorovsky, J., Schinzel, S., Lochter, M., Rösler, P.: Attacking deterministic signature schemes using fault attacks. Cryptology ePrint Archive, Report 2017/1014 (2017). https://eprint.iacr.org/2017/1014
Poddebniak, D., Somorovsky, J., Schinzel, S., Lochter, M., Rösler, P.: Attacking deterministic signature schemes using fault attacks. In: 2018 IEEE European Symposium on Security and Privacy, EuroS &P 2018, London, United Kingdom, 24–26 April 2018, pp. 338–352. IEEE (2018). https://doi.org/10.1109/EuroSP.2018.00031
Prest, T., ‘Dan’: falcon.py. https://github.com/tprest/falcon.py. Accessed 31 Dec 2022
Prest, T., et al.: FALCON. Technical report, National Institute of Standards and Technology (2022). https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
Romailler, Y., Pelissier, S.: Practical fault attack against the ED25519 and EDDSA signature schemes. In: 2017 Workshop on Fault Diagnosis and Tolerance in Cryptography, FDTC 2017, Taipei, Taiwan, 25 September 2017, pp. 17–24. IEEE Computer Society (2017). https://doi.org/10.1109/FDTC.2017.12
Samwel, N., Batina, L.: Practical fault injection on deterministic signatures: the case of EdDSA. In: Joux, A., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2018. LNCS, vol. 10831, pp. 306–321. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-319-89339-6_17
Schwabe, P., et al.: CRYSTALS-KYBER. Technical report, National Institute of Standards and Technology (2022). https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
Zeh, A., Meier, M., Rieger, V.: Parity-based concurrent error detection schemes for the ChaCha stream cipher. In: 2019 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems, DFT 2019, Noordwijk, Netherlands, 2–4 October 2019, pp. 1–4. IEEE (2019). https://doi.org/10.1109/DFT.2019.8875478
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Bauer, S., De Santis, F. (2024). A Differential Fault Attack Against Deterministic Falcon Signatures. In: Bhasin, S., Roche, T. (eds) Smart Card Research and Advanced Applications. CARDIS 2023. Lecture Notes in Computer Science, vol 14530. Springer, Cham. https://doi.org/10.1007/978-3-031-54409-5_3
Download citation
DOI: https://doi.org/10.1007/978-3-031-54409-5_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-54408-8
Online ISBN: 978-3-031-54409-5
eBook Packages: Computer ScienceComputer Science (R0)