Skip to main content

TCP Cubic Implementation in the OMNeT++ INET Framework for SIoT Simulation Scenarios

  • Conference paper
  • First Online:
Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom 2023)

Abstract

TCP is a well-known protocol for reliable data transfer. Although TCP was originally designed for networks with low Round Trip Time (RTT) and low error rates over the communication channel, in modern networks these characteristics vary drastically, e.g., Long Fat Networks are usually attributed a high Bandwidth Delay Product. When considering satellite communications, which are also characterized by high error rates but are considered a driving force for future networks, such as the Satellite Internet of Things (SIoT), it becomes clear that there exists an ever-growing need to revisit TCP protocol variants and develop new tools to simulate their behavior and optimize their performance. In this paper, a TCP Cubic implementation for the OMNeT++ INET Framework is presented and made publicly available to the research community. Simulation experiments validate its expected behavior in accordance with the theoretical analysis. A performance comparison against the popular TCP NewReno is also performed to evaluate TCP Cubic’s applicability to satellite environments. The obtained results testify to the latter’s superiority in efficiently allocating the bandwidth among the different information flows with vast gains to the overall system throughput, thus, rendering it the better candidate for future SIoT environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Accessible at the web address: https://omnetpp.org/.

  2. 2.

    Accesible at the web address: https://inet.omnetpp.org/.

  3. 3.

    Accessible at the web address: https://github.com/GIANNIS-AGGELIS/INET-TCP-CUBIC.

References

  1. Abdelsalam, A., Luglio, M., Patriciello, N., Roseti, C., Zampognaro, F.: TCP wave over Linux: a disruptive alternative to the traditional TCP window approach. Comput. Netw. 184, 107633 (2021). https://doi.org/10.1016/j.comnet.2020.107633. https://www.sciencedirect.com/science/article/pii/S1389128620312585

  2. Abdelsalam, A., Luglio, M., Roseti, C., Zampognaro, F.: TCP wave resilience to link changes. In: Proceedings of the 13th International Joint Conference on E-Business and Telecommunications, ICETE 2016, pp. 72–79. SCITEPRESS - Science and Technology Publications, LDA, Setubal, PRT (2016). https://doi.org/10.5220/0005966700720079

  3. Abdelsalam, A., Roseti, C., Zampognaro, F.: TCP performance for satellite M2M applications over random access links. In: 2018 International Symposium on Networks, Computers and Communications (ISNCC), pp. 1–5 (2018). https://doi.org/10.1109/ISNCC.2018.8531048

  4. Akyildiz, I., Morabito, G., Palazzo, S.: TCP-Peach: a new congestion control scheme for satellite IP networks. IEEE/ACM Trans. Network. 9(3), 307–321 (2001). https://doi.org/10.1109/90.929853

    Article  Google Scholar 

  5. Akyildiz, I., Zhang, X., Fang, J.: TCP-Peach+: enhancement of TCP-peach for satellite IP networks. IEEE Commun. Lett. 6(7), 303–305 (2002). https://doi.org/10.1109/LCOMM.2002.801317

    Article  Google Scholar 

  6. Atzori, L., Iera, A., Morabito, G.: The internet of things: a survey. Comput. Netw. 54(15), 2787–2805 (2010). https://doi.org/10.1016/j.comnet.2010.05.010. https://www.sciencedirect.com/science/article/pii/S1389128610001568

  7. Cai, H., Eun, D.Y., Ha, S., Rhee, I., Xu, L.: Stochastic ordering for internet congestion control and its applications. In: IEEE INFOCOM 2007–26th IEEE International Conference on Computer Communications, pp. 910–918 (2007). https://doi.org/10.1109/INFCOM.2007.111

  8. Callegari, C., Giordano, S., Pagano, M., Pepe, T.: Behavior analysis of TCP Linux variants. Comput. Netw. 56(1), 462–476 (2012). https://doi.org/10.1016/j.comnet.2011.10.002

    Article  Google Scholar 

  9. Cardwell, N., Cheng, Y., Gunn, C.S., Yeganeh, S.H., Jacobson, V.: BBR: congestion-based congestion control. Commun. ACM 60(2), 58–66 (2017). https://doi.org/10.1145/3009824

  10. Centenaro, M., Costa, C.E., Granelli, F., Sacchi, C., Vangelista, L.: A survey on technologies, standards and open challenges in satellite IoT. IEEE Commun. Surv. Tutorials 23(3), 1693–1720 (2021). https://doi.org/10.1109/COMST.2021.3078433

  11. Claypool, S., Chung, J., Claypool, M.: Comparison of TCP congestion control performance over a satellite network. In: Hohlfeld, O., Lutu, A., Levin, D. (eds.) PAM 2021. LNCS, vol. 12671, pp. 499–512. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72582-2_29

    Chapter  Google Scholar 

  12. Dai, C.Q., Zhang, M., Li, C., Zhao, J., Chen, Q.: QoE-aware intelligent satellite constellation design in satellite internet of things. IEEE Internet Things J. 8(6), 4855–4867 (2021). https://doi.org/10.1109/JIOT.2020.3030263

    Article  Google Scholar 

  13. De Sanctis, M., Cianca, E., Araniti, G., Bisio, I., Prasad, R.: Satellite communications supporting internet of remote things. IEEE Internet Things J. 3(1), 113–123 (2016). https://doi.org/10.1109/JIOT.2015.2487046

    Article  Google Scholar 

  14. Freimann, A., Dierkes, M., Petermann, T., Liman, C., Kempf, F., Schilling, K.: ESTNeT: a discrete event simulator for space-terrestrial networks. CEAS Space J. 13, 39–49 (2021). https://doi.org/10.1007/s12567-020-00316-6

    Article  Google Scholar 

  15. Fu, J.: TCP cubic memo. https://gist.github.com/fuji246/cffb0e460c14956d7357b57ea6823100. Accessed 13 May 2023

  16. Ha, S., Rhee, I.: Taming the elephants: new TCP slow start. Comput. Netw. 55(9), 2092–2110 (2011). https://doi.org/10.1016/j.comnet.2011.01.014

    Article  Google Scholar 

  17. Ha, S., Rhee, I., Xu, L.: Cubic: a new TCP-friendly high-speed TCP variant. SIGOPS Oper. Syst. Rev. 42(5), 64–74 (2008). https://doi.org/10.1145/1400097.1400105

  18. Kua, J., Loke, S.W., Arora, C., Fernando, N., Ranaweera, C.: Internet of things in space: a review of opportunities and challenges from satellite-aided computing to digitally-enhanced space living. Sensors 21(23) (2021). https://doi.org/10.3390/s21238117

  19. Le, H.D., Pham, A.T.: TCP over satellite-to-unmanned aerial/ground vehicles laser links: Hybla or cubic? In: 2020 IEEE Region 10 Conference (TENCON), pp. 720–725 (2020). https://doi.org/10.1109/TENCON50793.2020.9293761

  20. Levasseur, B., Claypool, M., Kinicki, R.: A TCP cubic implementation in NS-3. In: Proceedings of the 2014 Workshop on NS-3, WNS3 2014. Association for Computing Machinery, New York, NY, USA (2014). https://doi.org/10.1145/2630777.2630780

  21. Mészáros, Levente, Varga, Andras, Kirsche, Michael: INET Framework. In: Virdis, Antonio, Kirsche, Michael (eds.) Recent Advances in Network Simulation. EICC, pp. 55–106. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12842-5_2

    Chapter  Google Scholar 

  22. Nguyen, D.C., et al.: 6G internet of things: a comprehensive survey. IEEE Internet Things J. 9(1), 359–383 (2022). https://doi.org/10.1109/JIOT.2021.3103320

    Article  Google Scholar 

  23. Obata, H., Ishida, K., Takeuchi, S., Hanasaki, S.: TCP-Star: TCP congestion control method for satellite internet. IEICE Trans. Commun. 89(6), 1766–1773 (2006)

    Article  Google Scholar 

  24. Peters, B., Zhao, P., Chung, J.W., Claypool, M.: TCP HyStart performance over a satellite network. In: Proceedings of the 0x15 NetDev Conference, Virtual Conference (2021)

    Google Scholar 

  25. Pirovano, A., Garcia, F.: A new survey on improving TCP performances over geostationary satellite link. Netw. Commun. Technol. 2(1), xxx (2013). https://doi.org/10.5539/nct.v2n1p1

    Article  Google Scholar 

  26. Postel, J.: Transmission control protocol. Technical report (1981)

    Google Scholar 

  27. Rhee, I., Xu, L., Ha, S., Zimmermann, A., Eggert, L., Scheffenegger, R.: CUBIC for fast long-distance networks. RFC 8312, February 2018. https://doi.org/10.17487/RFC8312

  28. Roseti, C., Kristiansen, E.: TCP Noordwijk: TCP-based transport optimized for web traffic in satellite networks. In: 26th International Communications Satellite Systems Conference (ICSSC) (2008)

    Google Scholar 

  29. Shang, W., Yu, Y., Droms, R., Zhang, L.: Challenges in IoT networking via TCP/IP architecture. NDN Project (2016)

    Google Scholar 

  30. Tsipis, A., Papamichail, A., Angelis, I., Koufoudakis, G., Tsoumanis, G., Oikonomou, K.: An alertness-adjustable cloud/fog IoT solution for timely environmental monitoring based on wildfire risk forecasting. Energies 13(14) (2020). https://doi.org/10.3390/en13143693. https://www.mdpi.com/1996-1073/13/14/3693

  31. Varga, A.: Using the OMNeT++ discrete event simulation system in education. IEEE Trans. Educ. 42(4), 11 (1999). https://doi.org/10.1109/13.804564

  32. Varga, A., Hornig, R.: An overview of the OMNeT++ simulation environment. In: ICST (2010). https://doi.org/10.4108/ICST.SIMUTOOLS2008.3027

  33. Zhao, P., Peters, B., Chung, J., Claypool, M.: Competing TCP congestion control algorithms over a satellite network. In: 2022 IEEE 19th Annual Consumer Communications Networking Conference (CCNC), pp. 132–138, January 2022. https://doi.org/10.1109/CCNC49033.2022.9700541

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis Angelis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Angelis, I., Tsipis, A., Christopoulou, E., Oikonomou, K. (2024). TCP Cubic Implementation in the OMNeT++ INET Framework for SIoT Simulation Scenarios. In: Gao, H., Wang, X., Voros, N. (eds) Collaborative Computing: Networking, Applications and Worksharing. CollaborateCom 2023. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 561. Springer, Cham. https://doi.org/10.1007/978-3-031-54521-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-54521-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-54520-7

  • Online ISBN: 978-3-031-54521-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics