Skip to main content

Task Offloading in UAV-to-Cell MEC Networks: Cell Clustering and Path Planning

  • Conference paper
  • First Online:
Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom 2023)

Abstract

When a natural disaster occurs, ground base stations (BSs) are destroyed and cannot provide communication services. Rapid restoration of communication is of great significance to the lives of trapped persons. This paper studies the problem of unmanned aerial vehicle (UAV) equipped with mobile edge computing (MEC) servers to provide communication and computing services for ground users in the scenario where the ground infrastructure is destroyed. We designed a UAV-to-Cell offloading system, which provides services in units of cells. By determining the hover locations (HLs) and trajectories, the UAV can handle more tasks with limited battery energy. Since tasks have time limit requirements, the order of processing will affect the task data size of the system. We solve this problem by joint cell clustering and path planning. Among them, elliptic clustering is used to divide the cells, the 3D position of the UAV is determined according to the quality of user service, and the double deep Q-network (DDQN) algorithm is used to determine the trajectory of the UAV. Simulation experiments demonstrate the effectiveness and efficiency of our proposed strategy by comparing it with the baselines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ITU, DBM.: Measuring digital development - Facts and figures 2021. ITU Publication (2021)

    Google Scholar 

  2. Luo, Q., Hu, S., Li, C., Li, G., Shi, W.: Resource scheduling in edge computing: a survey. IEEE Commun. Surv. Tutor. 23(4), 2131–2165 (2021)

    Article  Google Scholar 

  3. UNDRR: Human cost of disaster - An overview of the last 20 years (2020)

    Google Scholar 

  4. Ning, Z., et al.: 5G-enabled UAV-to-community offloading: joint trajectory design and task scheduling. IEEE J. Sel. Areas Commun. 39(11), 3306–3320 (2021)

    Article  Google Scholar 

  5. Sun, H., et al.: Coverage analysis for cellular-connected random 3D mobile UAVs with directional antennas. IEEE Wirel. Commun. Lett. 12(3), 550–554 (2023)

    Article  Google Scholar 

  6. Al-Hourani, A., Kandeepan, S., Lardner, S.: Optimal LAP altitude for maximum coverage. IEEE Wirel. Commun. Lett. 3(6), 569–572 (2014)

    Article  Google Scholar 

  7. Al-Hourani, A., Kandeepan, S., Jamalipour, A.: Modeling air-to-ground path loss for low altitude platforms in urban environments. In: 2014 IEEE Global Communications Conference (GLOBECOM 2014), pp. 2898–2904. IEEE (2014)

    Google Scholar 

  8. Mozaffari, M., Saad, W., Bennis, M., Debbah, M.: Efficient deployment of multiple unmanned aerial vehicles for optimal wireless coverage. IEEE Commun. Lett. 20(8), 1647–1650 (2016)

    Article  Google Scholar 

  9. Noh, S.C., Jeon, H.B., Chae, C.B.: Energy-efficient deployment of multiple UAVs using ellipse clustering to establish base stations. IEEE Wirel. Commun. Lett. 9(8), 1155–1159 (2020)

    Article  Google Scholar 

  10. Babu, N., Virgili, M., Papadias, C.B., Popovski, P., Forsyth, A.J.: Cost- and energy-efficient aerial communication networks with interleaved hovering and flying. IEEE Trans. Veh. Technol. 70(9), 9077–9087 (2021)

    Article  Google Scholar 

  11. Wan, Y., Zhong, Y., Ma, A., Zhang, L.: An accurate UAV 3-D path planning method for disaster emergency response based on an improved multiobjective swarm intelligence algorithm. IEEE Trans. Cybern. 53(4), 2658–2671 (2023)

    Article  Google Scholar 

  12. Liu, Y., Li, Y., Niu, Y., Jin, D.: Joint optimization of path planning and resource allocation in mobile edge computing. IEEE Trans. Mob. Comput. 19(9), 2129–2144 (2020)

    Article  Google Scholar 

  13. Wang, D., Tian, J., Zhang, H., Wu, D.: Task offloading and trajectory scheduling for UAV-enabled MEC networks: an optimal transport theory perspective. IEEE Wirel. Commun. Lett. 11(1), 150–154 (2022)

    Article  Google Scholar 

  14. Chang, H., Chen, Y., Zhang, B., Doermann, D.: Multi-UAV mobile edge computing and path planning platform based on reinforcement learning. IEEE Trans. Emerg. Top. Comput. Intell. 6(3), 489–498 (2021)

    Article  Google Scholar 

  15. Wang, L., Wang, K., Pan, C., Xu, W., Aslam, N., Hanzo, L.: Multi-agent deep reinforcement learning-based trajectory planning for multi-UAV assisted mobile edge computing. IEEE Trans. Cogn. Commun. Netw. 7(1), 73–84 (2021)

    Article  Google Scholar 

  16. Zhang, N., Wang, J., Kang, G., Liu, Y.: Uplink nonorthogonal multiple access in 5G systems. IEEE Commun. Lett. 20(3), 458–461 (2016)

    Article  Google Scholar 

  17. Zeng, Y., Zhang, R.: Energy-efficient UAV communication with trajectory optimization. IEEE Trans. Wirel. Commun. 16(6), 3747–3760 (2017)

    Article  Google Scholar 

  18. Hu, Q., Cai, Y., Yu, G., Qin, Z., Zhao, M., Li, G.Y.: Joint offloading and trajectory design for UAV-enabled mobile edge computing systems. IEEE Internet Things J. 6(2), 1879–1892 (2019)

    Article  Google Scholar 

  19. Zhang, T., Xu, Y., Loo, J., Yang, D., Xiao, L.: Joint computation and communication design for UAV-assisted mobile edge computing in IoT. IEEE Trans. Industr. Inf. 16(8), 5505–5516 (2019)

    Article  Google Scholar 

  20. Zhang, K., Gui, X., Ren, D., Li, D.: Energy-latency tradeoff for computation offloading in UAV-assisted multiaccess edge computing system. IEEE Internet Things J. 8(8), 6709–6719 (2020)

    Article  Google Scholar 

  21. Lyu, L., Zeng, F., Xiao, Z., Zhang, C., Jiang, H., Havyarimana, V.: Computation bits maximization in UAV-enabled mobile-edge computing system. IEEE Internet Things J. 9(13), 10640–10651 (2021)

    Article  Google Scholar 

Download references

Acknowledgments

This paper is supported by the National Nature Science Foundation of China under grant number: T2350710232.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingchu Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, M., Qi, W., Li, S. (2024). Task Offloading in UAV-to-Cell MEC Networks: Cell Clustering and Path Planning. In: Gao, H., Wang, X., Voros, N. (eds) Collaborative Computing: Networking, Applications and Worksharing. CollaborateCom 2023. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 562. Springer, Cham. https://doi.org/10.1007/978-3-031-54528-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-54528-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-54527-6

  • Online ISBN: 978-3-031-54528-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics