Skip to main content

DGFormer: An Effective Dynamic Graph Transformer Based Anomaly Detection Model for IoT Time Series

  • Conference paper
  • First Online:
Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom 2023)

Abstract

Internet of Things (IoT) is network based on information carriers such as the Internet and traditional telecommunications networks, so that all ordinary physical objects that can be independently addressed can be interconnected. In the face of the IoT produces a large of time series data, which is very necessary to detect anomaly data. Transformer has proven to be a powerful tool in several areas, but still has some limitations, such as the prediction accuracy is not high enough. As the dominant trend of multivariate time series in different scenarios becomes increasingly evident, it is particularly important to accurately capture the spatio-temporal features between them. To address these issues, we propose Dynamic Graph transFormer (DGFormer), an effective Dynamic Graph Transformer based Anomaly Detection Model for IoT Time Series. We first use Transformer with anomaly attention mechanism to extract time features. Then, a dynamic relationship embedding strategy is proposed to capture spatio-temporal features dynamically and learn the adjacency matrix adaptively. Besides, each layer of GNN is soft clustered by Diffpooling. Finally, in order to further improve the detection performance of model, we integrate the traditional autoregressive linear model with the nonlinear neural network in parallel. The experimental results show that the proposed model achieves the highest F1-score on three public IoT datasets, and the F1-score is improved by 19.3% on average.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://github.com/yzhao062/pyod.

References

  1. Renjie, W., Eamonn, J.K.: Current time series anomaly detection benchmarks are flawed and are creating the illusion of progress. IEEE Trans. Knowl. Data Eng. 35(3), 2421–2429 (2021)

    Google Scholar 

  2. Liang, W., Huang, W., Long, J., et al.: Deep reinforcement learning for resource protection and real-time detection in IoT environment. IEEE Internet Things J. 7(7), 6392–6401 (2020)

    Article  Google Scholar 

  3. Muhammad, S.: Fog computing and its role in the internet of things: concept, security and privacy issues. Int. J. Comput. Appl. 180(32), 7–9 (2018)

    Google Scholar 

  4. Xin, R., Chen, P., Zhao, Z.: CausalRCA: causal inference based precise fine-grained root cause localization for microservice applications. J. Syst. Softw. 203, 111724 (2023). https://doi.org/10.1016/j.jss.2023.111724

    Article  Google Scholar 

  5. Peng, C., et al.: Effectively detecting operational anomalies in large-scale IoT data infrastructures by using a GAN-based predictive model. Comput. J. 65(11), 2909–2925 (2022)

    Article  Google Scholar 

  6. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. (CSUR) 41(3), 1–58 (2009)

    Article  Google Scholar 

  7. Zhang, R., Chen, J., Song, Y., Shan, W., Chen, P., Xia, Y.: An effective transformation-encoding-attention framework for multivariate time series anomaly detection in IoT environment. Mob. Netw. Appl. 1–13 (2023). https://doi.org/10.1007/s11036-023-02204-9

  8. Tang, M., Fu, X., Wu, H., Huang, Q., Zhao, Q.: Traffic flow anomaly detection based on robust ridge regression with particle swarm optimization algorithm. Math. Prob. Eng. 2020, 1–10 (2020)

    Article  Google Scholar 

  9. Venkatesan, R., et al.: Hyperspectral image features classification using deep learning recurrent neural networks. J. Med. Syst. (2019). https://doi.org/10.1007/s10916-019-1347-9

    Article  Google Scholar 

  10. Wu, Y., Dai, H.N., Tang, H.: Graph neural networks for anomaly detection in industrial internet of things. IEEE Internet Things J. 9(12), 9214–9231 (2021). https://doi.org/10.1109/JIOT.2021.3094295

    Article  Google Scholar 

  11. Kahya, E., Theodossiou, P.: Predicting corporate finacial distress: a time-series CUSUM methodology’. Rev. Quant. Finan. Account. 13(4), 323–345 (1996)

    Article  Google Scholar 

  12. Janacek, G.: Time series analysis forecasting and control. J. Time 31(4), 303 (2010)

    Google Scholar 

  13. Chen, Y., Wang, S., Zhao, Q., Sun, G.: Detection of multivariate geochemical anomalies using the bat-optimized isolation forest and bat-optimized elliptic envelope models. J. Earth Sci. 32(2), 415–426 (2021)

    Article  Google Scholar 

  14. Lai, G., Chang, W.C., Yang, Y., Liu, H.: Modeling long-and short-term temporal patterns with deep neural networks. In: International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 95–104. ACM (2018)

    Google Scholar 

  15. Song, Y., Xin, R., Chen, P., Zhang, R., Chen, J., Zhao, Z.: Identifying performance anomalies in fluctuating cloud environments: a robust correlative-GNN-based explainable approach. Future Gener. Comput. Syst. 145, 77–86 (2023)

    Article  Google Scholar 

  16. Park, D., Hoshi, Y., Kemp, C.C.: A multimodal anomaly detector for robot-assisted feeding using an lstm-based variational autoencoder. IEEE Rob. Autom. Lett. 3(3), 1544–1551 (2018)

    Article  Google Scholar 

  17. Fazle, K., Somshubra, M., Houshang, D.: Insights into lstm fully convolutional networks for time series classification. IEEE Access 7, 67718–67725 (2019)

    Article  Google Scholar 

  18. Zhang, X., Gao, Y., Lin, J., et al.: TapNet: multivariate time series classification with attentional prototypical network. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 6845–6852 (2020)

    Google Scholar 

  19. Schuster, M., Paliwal, K.K.: Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 45(11), 2673–2681 (1997)

    Article  Google Scholar 

  20. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation (2014). https://doi.org/10.3115/v1/D14-1179

  21. Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Adv. Neural Inf. Process. Syst. 33, 13016–13026 (2020)

    Google Scholar 

  22. Mehdi, M., Bing, X., et al.: Generative adversarial networks. Commun. ACM 63, 139–144 (2020)

    Article  Google Scholar 

  23. Qi, S., Chen, J., Chen, P., Wen, P., Niu, X., Xu, L.: An efficient GAN-based predictive framework for multivariate time series anomaly prediction in cloud data centers. J. Supercomput. 1–26 (2023). https://doi.org/10.1007/s11227-023-05534-3

  24. Xavier, B., et al.: A generalization of Transformer networks to graphs. DLG-AAAI (2020). https://doi.org/10.48550/arXiv.2012.09699

  25. Shao, P., He, J., Li, G., Zhang, D., Tao, J.: Hierarchical graph attention network for temporal knowledge graph reasoning. Neurocomputing 550, 126390 (2023)

    Article  Google Scholar 

  26. Devin, K., et al.: Rethinking graph transformers with spectral attention. In: NeurIPS (2021). https://doi.org/10.48550/arXiv.2106.03893

  27. Chen, D., et al.: A trainable optimal transport embedding for feature aggregation and its relationship to attention. In: ICLR (2021). https://doi.org/10.48550/arXiv.2006.12065

  28. Pan, Y., et al.: A novel approach to scheduling workflows upon cloud resources with fluctuating performance. MONET 25(2), 690–700 (2020)

    Google Scholar 

  29. Chen, P., Xia, Y., Pang, S., Li, J.: A probabilistic model for performance analysis of cloud infrastructures. Concurr. Comput. Pract. Exp. 27(17), 4784–4796 (2015)

    Article  Google Scholar 

  30. Christopher, M.B., et al.: Pattern Recognition and Machine Learning. Springer, New York (2006)

    Google Scholar 

  31. Ahmed, A., Zhuanghua, L., Tomer, L.: Practical approach to asynchronous multivariate time series anomaly detection and localization. In: KDD, pp. 2485–2494 (2021)

    Google Scholar 

  32. Ya, S., Wei, S., et al.: Robust anomaly detection for multivariate time series through stochastic recurrent neural network. In: SIGKDD Explorations, pp. 2828–2837 (2019)

    Google Scholar 

  33. Houssam, Z., Manon, R., Bruno, L., et al.: Adversarially learned anomaly detection. In: IEEE International Conference on Data Mining (ICDM) (2018). https://doi.org/10.1109/ICDM.2018.00088

  34. Bernhard, S., et al.: Support vector method for novelty detection. Adv. Neural Inf. Process. Syst. (1999)

    Google Scholar 

  35. Liu, Y., Li, Z., Zhou, C., et al.: Generative adversarial active learning for unsupervised outlier detection. IEEE Trans. Knowl. Data Eng. 32(8), 1517–1528 (2019). https://doi.org/10.1109/TKDE.2019.2905606

    Article  Google Scholar 

  36. Julien, A., Pietro, M., Frédéric, G., Sébastien, M., Maria A.Z.: USAD: unsupervised anomaly detection on multivariate time series. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 3395–3404 (2020)

    Google Scholar 

  37. Martin, S., Ralf, S., Hermann, N.: LSTM neural networks for language modeling. In: Interspeech (2012). https://doi.org/10.1016/0165-6074(89)90269-X

  38. Zhao, H., Wang, Y., Duan, J., et al.: Multivariate time-series anomaly detection via graph attention network. In: ICDM (2020). https://doi.org/10.1109/ICDM50108.2020.00093

  39. Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: time series anomaly detection with association discrepancy. In: ICLR (2021). arXiv preprint arXiv:2110.02642

  40. Giuliano, C.: TranAD: deep Transformer networks for anomaly detection in multivariate time series data. In: Proceedings of the VLDB Endowment (2022). https://doi.org/10.48550/arXiv.2201.07284

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xi Li or Peng Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

He, H., Li, X., Chen, P., Chen, J., Song, W., Xi, Q. (2024). DGFormer: An Effective Dynamic Graph Transformer Based Anomaly Detection Model for IoT Time Series. In: Gao, H., Wang, X., Voros, N. (eds) Collaborative Computing: Networking, Applications and Worksharing. CollaborateCom 2023. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 562. Springer, Cham. https://doi.org/10.1007/978-3-031-54528-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-54528-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-54527-6

  • Online ISBN: 978-3-031-54528-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics