Skip to main content

LAMB: Label-Induced Mixed-Level Blending for Multimodal Multi-label Emotion Detection

  • Conference paper
  • First Online:
Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom 2023)

Abstract

To better understand complex human emotions, there is growing interest in utilizing heterogeneous sensory data to detect multiple co-occurring emotions. However, existing studies have focused on extracting static information from each modality, while overlooking various interactions within and between modalities. Additionally, the label-to-modality and label-to-label dependencies still lack exploration. In this paper, we propose LAbel-induced Mixed-level Blending (LAMB) to address these challenges. Mixed-level blending leverages shallow but manifold self-attention and cross-attention encoders in parallel to model unimodal context dependency and cross-modal interaction simultaneously. This is in contrast to previous works either use one of them or cascade them successively, which ignores the diversity of interaction in multimodal data. LAMB also employs label-induced aggregation to allow different labels to attend to the most relevant blended tokens adaptively using a transformer-based decoder, which facilitates the exploration of label-to-modality dependency. Unlike common low-order strategies in multi-label learning, correlations among multiple labels can be learned by self-attention in label embedding space before being treated as queries. Comprehensive experiments demonstrate the effectiveness of our methods for multimodal multi-label emotion detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baltrusaitis, T., Ahuja, C., Morency, L.P.: Multimodal machine learning: a survey and taxonomy. IEEE Trans. Pattern Anal. Mach. Intell. 41, 423–443 (2019)

    Article  Google Scholar 

  2. Baltrusaitis, T., Robinson, P., Morency, L.P.: OpenFace: an open source facial behavior analysis toolkit. In: Proceedings of the IEEE Winter Conference on Applications of Computer Vision, pp. 1–10 (2016)

    Google Scholar 

  3. Boutell, M.R., Luo, J., Shen, X., Brown, C.M.: Learning multi-label scene classification. Pattern Recogn. 37, 1757–1771 (2004)

    Article  Google Scholar 

  4. Chen, Z.M., Wei, X.S., Wang, P., Guo, Y.: Multi-label image recognition with graph convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5177–5186 (2019)

    Google Scholar 

  5. Clare, A., King, R.D.: Knowledge discovery in multi-label phenotype data. In: Proceedings of the European Conference on Principles of Data Mining and Knowledge Discovery, pp. 42–53 (2001)

    Google Scholar 

  6. Degottex, G., Kane, J., Drugman, T., Raitio, T., Scherer, S.: COVAREP - A collaborative voice analysis repository for speech technologies. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 960–964 (2014)

    Google Scholar 

  7. Elisseeff, A., Weston, J.: A kernel method for multi-labelled classification. In: Proceedings of the Conference on Neural Information Processing Systems, pp. 681–687 (2001)

    Google Scholar 

  8. Feng, L., An, B., He, S.: Collaboration based multi-label learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 3550–3557 (2019)

    Google Scholar 

  9. Fürnkranz, J., Hüllermeier, E., Mencía, E.L., Brinker, K.: Multilabel classification via calibrated label ranking. Mach. Learn. 73, 133–153 (2008)

    Article  Google Scholar 

  10. Ghamrawi, N., McCallum, A.: Collective multi-label classification. In: Proceedings of the ACM International Conference on Information and Knowledge Management, pp. 195–200 (2005)

    Google Scholar 

  11. Graves, A., Fernández, S., Gomez, F.J., Schmidhuber, J.: Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks. In: Proceedings of the International Conference on Machine Learning, pp. 369–376 (2006)

    Google Scholar 

  12. Hazarika, D., Zimmermann, R., Poria, S.: MISA: modality-invariant and -specific representations for multimodal sentiment analysis. In: Proceedings of the ACM International Conference on Multimedia, pp. 1122–1131 (2020)

    Google Scholar 

  13. Huang, J., Li, G., Huang, Q., Wu, X.: Learning label-specific features and class-dependent labels for multi-label classification. IEEE Trans. Knowl. Data Eng. 28, 3309–3323 (2016)

    Article  Google Scholar 

  14. Liang, T., Lin, G., Feng, L., Zhang, Y., Lv, F.: Attention is not Enough: mitigating the distribution discrepancy in asynchronous multimodal sequence fusion. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 8128–8136 (2021)

    Google Scholar 

  15. Liu, Z., Shen, Y., Lakshminarasimhan, V.B., Liang, P.P., Zadeh, A., Morency, L.P.: Efficient low-rank multimodal fusion with modality-specific factors. In: Proceedings of the Annual Meeting of the Association for Computational Linguistics, vol. 1, pp. 2247–2256 (2018)

    Google Scholar 

  16. Lv, F., Chen, X., Huang, Y., Duan, L., Lin, G.: Progressive modality reinforcement for human multimodal emotion recognition from unaligned multimodal sequences. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2554–2562 (2021)

    Google Scholar 

  17. Pennington, J., Socher, R., Manning, C.D.: GloVe: global vectors for word representation. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, pp. 1532–1543 (2014)

    Google Scholar 

  18. Qi, G.J., Hua, X.S., Rui, Y., Tang, J., Mei, T., Zhang, H.J.: Correlative multi-label video annotation. In: Proceedings of the ACM International Conference on Multimedia, pp. 17–26 (2007)

    Google Scholar 

  19. Rahman, W., et al.: Integrating multimodal information in large pretrained transformers. In: Proceedings of the Annual Meeting of the Association for Computational Linguistics, vol. 1, pp. 2359–2369 (2020)

    Google Scholar 

  20. Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-label classification. Mach. Learn. 85, 333–359 (2011)

    Article  MathSciNet  Google Scholar 

  21. Tsai, Y.H.H., Bai, S., Liang, P.P., Kolter, J.Z., Morency, L.P., Salakhutdinov, R.: Multimodal transformer for unaligned multimodal language sequences. In: Proceedings of the Annual Meeting of the Association for Computational Linguistics, vol. 1, pp. 6558–6569 (2019)

    Google Scholar 

  22. Tsoumakas, G., Katakis, I.: Multi-label classification: an overview. Int. J. Data Warehouse. Min. 3, 1–13 (2007)

    Article  Google Scholar 

  23. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)

    Google Scholar 

  24. Wang, H., et al.: Collaboration based multi-label propagation for fraud detection. In: Proceedings of the International Joint Conference on Artificial Intelligence, pp. 2477–2483 (2020)

    Google Scholar 

  25. Wang, Y., Shen, Y., Liu, Z., Liang, P.P., Zadeh, A., Morency, L.P.: Words Can Shift: dynamically adjusting word representations using nonverbal behaviors. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 7216–7223 (2019)

    Google Scholar 

  26. Wu, X., et al.: Multi-View Multi-label learning with view-specific information extraction. In: Proceedings of the International Joint Conference on Artificial Intelligence, pp. 3884–3890 (2019)

    Google Scholar 

  27. Xiao, L., Huang, X., Chen, B., Jing, L.: Label-specific document representation for multi-label text classification. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, pp. 466–475 (2019)

    Google Scholar 

  28. Yang, D., Huang, S., Kuang, H., Du, Y., Zhang, L.: Disentangled representation learning for multimodal emotion recognition. In: Proceedings of the ACM International Conference on Multimedia, pp. 1642–1651 (2022)

    Google Scholar 

  29. Yang, D., Kuang, H., Huang, S., Zhang, L.: Learning modality-specific and -agnostic representations for asynchronous multimodal language sequences. In: Proceedings of the ACM International Conference on Multimedia, pp. 1708–1717 (2022)

    Google Scholar 

  30. Yang, P., Sun, X., Li, W., Ma, S., Wu, W., Wang, H.: SGM: sequence generation model for multi-label classification. In: Proceedings of the International Conference on Computational Linguistics, pp. 3915–3926 (2018)

    Google Scholar 

  31. Yu, W., Xu, H., Yuan, Z., Wu, J.: learning modality-specific representations with self-supervised multi-task learning for multimodal sentiment analysis. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 10790–10797 (2021)

    Google Scholar 

  32. Zadeh, A., Chen, M., Poria, S., Cambria, E., Morency, L.P.: Tensor fusion network for multimodal sentiment analysis. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, pp. 1103–1114 (2017)

    Google Scholar 

  33. Zadeh, A., Liang, P.P., Poria, S., Cambria, E., Morency, L.P.: Multimodal language analysis in the wild: CMU-MOSEI dataset and interpretable dynamic fusion graph. In: Proceedings of the Annual Meeting of the Association for Computational Linguistics, vol. 1, pp. 2236–2246 (2018)

    Google Scholar 

  34. Zhang, D., et al.: Multi-modal multi-label emotion recognition with heterogeneous hierarchical message passing. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 14338–14346 (2021)

    Google Scholar 

  35. Zhang, M.L., Fang, J.P., Wang, Y.B.: BiLabel-specific features for multi-label classification. ACM Trans. Knowl. Discov. Data 16, 1–23 (2022)

    Google Scholar 

  36. Zhang, M.L., Wu, L.: Lift: multi-label learning with label-specific features. IEEE Trans. Knowl. Data Eng. 37, 107–120 (2015)

    Google Scholar 

  37. Zhang, M.L., Zhou, Z.H.: ML-KNN: A lazy learning approach to multi-label learning. Pattern Recogn. 40, 2038–2048 (2007)

    Article  Google Scholar 

  38. Zhang, M.L., Zhou, Z.H.: A review on multi-label learning algorithms. IEEE Trans. Knowl. Data Eng. 26, 1819–1837 (2014)

    Article  Google Scholar 

  39. Zhang, Y., Chen, M., Shen, J., Wang, C.: Tailor versatile multi-modal learning for multi-label emotion recognition. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 9100–9108 (2022)

    Google Scholar 

  40. Zhao, X., Chen, Y., Li, W., Gao, L., Tang, B.: MAG+: an extended multimodal adaptation gate for multimodal sentiment analysis. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 4753–4757 (2022)

    Google Scholar 

  41. Zhu, Y., Kwok, J.T., Zhou, Z.H.: Multi-label learning with global and local label correlation. IEEE Trans. Knowl. Data Eng. 30, 1081–1094 (2018)

    Article  Google Scholar 

Download references

Acknowledgments

This paper is supported by the National Natural Science Foundation of China (Grant No. 62192783, 62376117), the Collaborative Innovation Center of Novel Software Technology and Industrialization at Nanjing University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuwei Qian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Qian, S., Guo, M., Fan, Z., Chen, M., Wang, C. (2024). LAMB: Label-Induced Mixed-Level Blending for Multimodal Multi-label Emotion Detection. In: Gao, H., Wang, X., Voros, N. (eds) Collaborative Computing: Networking, Applications and Worksharing. CollaborateCom 2023. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 562. Springer, Cham. https://doi.org/10.1007/978-3-031-54528-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-54528-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-54527-6

  • Online ISBN: 978-3-031-54528-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics