Skip to main content

A Novel Semi-supervised IoT Time Series Anomaly Detection Model Using Graph Structure Learning

  • Conference paper
  • First Online:
Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom 2023)

Abstract

Internet of Things (IoT) is an evolving paradigm for building smart cross-industry. The data gathered from IoT devices may have anomalies or other errors for various reasons, such as malicious activities or sensor failures. Anomaly detection is thus in high need for guaranteeing trustworthy execution of IoT applications. Existing IoT anomaly detection methods are usually built upon unsupervised methods and thus can be inadequate when facing complex IoT data regularity. In this article, we propose a semi-supervised approach for detecting IoT time series anomalies based on Graph Structure Learning (GSL) using multi-layer perceptron Graph Convolutional Networks (GCN) and the Mean Teachers (MT) mechanism. The proposed model is capable of leveraging a small amount of labeled data (1% to 10%) to achieve high detection accuracy. We adopt Mean Teachers to utilize unlabeled data for enhancing the model’s detection performance. Moreover, we design a novel graph structure learning layer to adaptively capture the IoT data features among different nodes. Experimental results clearly suggest that the proposed model outperforms its competitors on two public IoT datasets, achieving 82.85% in terms of F1 score and 22.8% increase.

This research is supported by the National Natural Science Foundation under Grant No. 62376043 and Science and Technology Program of Sichuan Province under Grant No. 2020JDRC0067, No. 2023JDRC0087, and No. 2020YFG032662376043, and Chunhui Project of Ministry of Education of China under Grant No. Z2011085.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pang, G., et al.: Deep learning for anomaly detection: a review. ACM Comput. Surv. (CSUR) 54(2), 1–38 (2021)

    Article  Google Scholar 

  2. Sharma, B., Sharma, L., Lal, C.: Anomaly detection techniques using deep learning in IoT: a survey. In: 2019 International Conference on Computational Intelligence and Knowledge Economy (ICCIKE), pp. 146–149. IEEE (2019)

    Google Scholar 

  3. Chen, P., et al.: A probabilistic model for performance analysis of cloud infrastructures. Concurr. Comput. Pract. Exp. 27(17), 4784–4796 (2015)

    Article  Google Scholar 

  4. Pan, Y., et al.: A novel approach to scheduling workflows upon cloud resources with fluctuating performance. Mob. Netw. Appl. 25, 690–700 (2020)

    Article  Google Scholar 

  5. Tukey, J.W.: Exploratory Data Analysis, vol. 2 (1977)

    Google Scholar 

  6. van den Oord, A., et al.: WaveNet: a generative model for raw audio. arXiv preprint arXiv:1609.03499 (2016)

  7. Filonov, P., Lavrentyev, A., Vorontsov, A.: Multivariate industrial time series with cyber-attack simulation: fault detection using an LSTM-based predictive data model. arXiv preprint arXiv:1612.06676 (2016)

  8. Bodin, E., et al.: Nonparametric inference for auto-encoding variational Bayes. arXiv preprint arXiv:1712.06536 (2017)

  9. Goodfellow, I., et al.: Generative adversarial networks. Commun. ACM 63(11), 139–144 (2020)

    Article  MathSciNet  Google Scholar 

  10. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  11. Veličković, P., et al.: Graph attention networks. arXiv preprint arXiv:1710.10903 (2017)

  12. Tarvainen, A., Valpola, H.: Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  13. Braei, M., Wagner, S.: Anomaly detection in univariate time-series: a survey on the state-of-the-art. arXiv preprint arXiv:2004.00433 (2020)

  14. Bali, T.G., Mo, H., Tang, Y.: The role of autoregressive conditional skewness and kurtosis in the estimation of conditional VaR. J. Bank. Financ. 32(2), 269–282 (2008)

    Article  Google Scholar 

  15. Chandola, V.: Anomaly detection for symbolic sequences and time series data. University of Minnesota (2009)

    Google Scholar 

  16. Angiulli, F., Pizzuti, C.: Fast outlier detection in high dimensional spaces. In: Elomaa, T., Mannila, H., Toivonen, H. (eds.) PKDD 2002. LNCS, vol. 2431, pp. 15–27. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45681-3_2

    Chapter  Google Scholar 

  17. Shyu, M.-L., et al.: A novel anomaly detection scheme based on principal component classifier. In: Proceedings of the IEEE Foundations and New Directions of Data Mining Workshop, pp. 172–179. IEEE Press (2003)

    Google Scholar 

  18. Li, Y., et al.: Diffusion convolutional recurrent neural network: data-driven traffic forecasting. arXiv preprint arXiv:1707.01926 (2017)

  19. Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth IEEE International Conference on Data Mining. IEEE (2008)

    Google Scholar 

  20. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. arXiv preprint arXiv:1312.6114 (2013)

  21. Li, D., Chen, D., Jin, B., Shi, L., Goh, J., Ng, S.-K.: MAD-GAN: multivariate anomaly detection for time series data with generative adversarial networks. In: Tetko, I.V., Kůrková, V., Karpov, P., Theis, F. (eds.) ICANN 2019. LNCS, vol. 11730, pp. 703–716. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30490-4_56

    Chapter  Google Scholar 

  22. Chen, P., et al.: Effectively detecting operational anomalies in large-scale IoT data infrastructures by using a GAN-based predictive model. Comput. J. 65(11), 2909–2925 (2022)

    Article  Google Scholar 

  23. Qi, S., et al.: An efficient GAN-based predictive framework for multivariate time series anomaly prediction in cloud data centers. J. Supercomput. 80, 1–26 (2023)

    Google Scholar 

  24. Audibert, J., et al.: USAD: unsupervised anomaly detection on multivariate time series. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 3395–3404 (2020)

    Google Scholar 

  25. Su, Y., et al.: Robust anomaly detection for multivariate time series through stochastic recurrent neural network. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2828–2837 (2019)

    Google Scholar 

  26. Nicolicioiu, A., Duta, I., Leordeanu, M.: Recurrent space-time graph neural networks. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  27. Deng, A., Hooi, B.: Graph neural network-based anomaly detection in multivariate time series. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 5 (2021)

    Google Scholar 

  28. Wu, Z., et al.: Connecting the dots: multivariate time series forecasting with graph neural networks. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 753–763 (2020)

    Google Scholar 

  29. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: Advances in neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  30. Liu, Z., et al.: Rethinking the value of network pruning. arXiv preprint arXiv:1810.05270 (2018)

  31. Vu, Q.H., et al.: A graph method for keyword-based selection of the top-k databases. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, pp. 915–926 (2008)

    Google Scholar 

  32. Klinker, F.: Exponential moving average versus moving exponential average. Math. Semesterber. 58, 97–107 (2011)

    Article  MathSciNet  Google Scholar 

  33. Mathur, A.P., Tippenhauer, N.O.: SWaT: a water treatment testbed for research and training on ICS security. In: 2016 International Workshop on Cyber-Physical Systems for Smart Water Networks (CySWater), pp. 31–36. IEEE (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng Chen or Juan Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Song, W. et al. (2024). A Novel Semi-supervised IoT Time Series Anomaly Detection Model Using Graph Structure Learning. In: Gao, H., Wang, X., Voros, N. (eds) Collaborative Computing: Networking, Applications and Worksharing. CollaborateCom 2023. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 562. Springer, Cham. https://doi.org/10.1007/978-3-031-54528-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-54528-3_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-54527-6

  • Online ISBN: 978-3-031-54528-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics