Skip to main content

Cloud-Edge-Device Collaborative Image Retrieval and Recognition for Mobile Web

  • Conference paper
  • First Online:
Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom 2023)

Abstract

Efficient image retrieval and recognition are pivotal for optimal mobile web vision services. Traditional web-based solutions offer limited accuracy, high overhead, and struggle with vast image volumes. Transferring images for real-time cloud recognition demands stable communication, and large-scale concurrent requests strain computational and network resources. This paper introduces a distributed recognition approach, leveraging cloud-edge-device collaboration through edge computing’s low latency and high bandwidth. We present a lightweight image saliency detection model tailored for mobile web, enhancing initial image feature extraction. Additionally, we introduce an edge-based, deep learning-driven method to amplify image retrieval speed and precision. We incorporate a location and popularity-based caching system to alleviate strains on cloud resources and network bandwidth during extensive image requests. Our real-world tests validate our approach: our saliency detection model outpaces the benchmark by reducing the model size by up to 94%, making it suitable for mobile web deployment. The proposed method improves retrieval accuracy by 40% over cloud-based counterparts and cuts response latency by over 60%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Qiao, X., Ren, P., Dustdar, S., Liu, L., Ma, H., Chen, J.: Web ar: a promising future for mobile augmented reality-state of the art, challenges, and insights. Proc. IEEE 107(4), 651–666 (2019)

    Article  Google Scholar 

  2. Qiao, X., Ren, P., Nan, G., Liu, L., Dustdar, S., Chen, J.: Mobile web augmented reality in 5g and beyond: Challenges, opportunities, and future directions. China Commun. 16(9), 141–154 (2019)

    Article  Google Scholar 

  3. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60, 91–110 (2004)

    Article  Google Scholar 

  4. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: Orb: an efficient alternative to sift or surf. In: 2011 International Conference on Computer Vision, pp. 2564–2571. IEEE (2011)

    Google Scholar 

  5. Alcantarilla, P.F., Solutions, T.: Fast explicit diffusion for accelerated features in nonlinear scale spaces. IEEE Trans. Patt. Anal. Mach. Intell 34(7), 1281–1298 (2011)

    Google Scholar 

  6. Qiao, X., Ren, P., Dustdar, S., Chen, J.: A new era for web ar with mobile edge computing. IEEE Internet Comput. 22(4), 46–55 (2018)

    Article  Google Scholar 

  7. Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015)

    Google Scholar 

  8. Ma, N., Zhang, X., Zheng, H.-T., Sun, J.: ShuffleNet V2: practical guidelines for efficient CNN architecture design. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 122–138. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_8

    Chapter  Google Scholar 

  9. Chen, S., Tan, X., Wang, B., Lu, H., Hu, X., Fu, Y.: Reverse attention-based residual network for salient object detection. IEEE Trans. Image Process. 29, 3763–3776 (2020)

    Article  Google Scholar 

  10. Lu, P., Zhang, H., Peng, X., Jin, X.: An end-to-end neural network for image cropping by learning composition from aesthetic photos. arXiv preprint arXiv:1907.01432 (2019)

  11. Jian, S., Kaiming, H., Shaoqing, R., Xiangyu, Z.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision & Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  12. Prakash, C.S., Panzade, P.P., Om, H., Maheshkar, S.: Detection of copy-move forgery using akaze and sift keypoint extraction. Multimedia Tools Appli. 78, 23535–23558 (2019)

    Article  Google Scholar 

  13. Liu, T., Yuan, Z., Sun, J., Wang, J., Zheng, N., Tang, X., Shum, H.Y.: Learning to detect a salient object. IEEE Trans. Pattern Anal. Mach. Intell. 33(2), 353–367 (2010)

    Google Scholar 

  14. Li, G., Yu, Y.: Visual saliency detection based on multiscale deep cnn features. IEEE Trans. Image Process. 25(11), 5012–5024 (2016)

    Article  MathSciNet  Google Scholar 

  15. Shi, J., Yan, Q., Xu, L., Jia, J.: Hierarchical image saliency detection on extended cssd. IEEE Trans. Pattern Anal. Mach. Intell. 38(4), 717–729 (2015)

    Article  Google Scholar 

  16. Jiang, H., Wang, J., Yuan, Z., Wu, Y., Zheng, N., Li, S.: Salient object detection: a discriminative regional feature integration approach. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2083–2090 (2013)

    Google Scholar 

  17. Li, G., Yu, Y.: Deep contrast learning for salient object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 478–487 (2016)

    Google Scholar 

  18. Hou, Q., Cheng, M.M., Hu, X., Borji, A., Tu, Z., Torr, P.H.: Deeply supervised salient object detection with short connections. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3203–3212 (2017)

    Google Scholar 

  19. Wang, W., Shen, J., Dong, X., Borji, A.: Salient object detection driven by fixation prediction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1711–1720 (2018)

    Google Scholar 

  20. Liu, N., Han, J., Yang, M.H.: Picanet: learning pixel-wise contextual attention for saliency detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3089–3098 (2018)

    Google Scholar 

  21. Wei, X.S., Cui, Q., Yang, L., Wang, P., Liu, L.: Rpc: a large-scale retail product checkout dataset. arXiv preprint arXiv:1901.07249 (2019)

Download references

Acknowledgment

This research was funded in part by the National Natural Science Foundation of China under Grant 62202065, in part by the Project funded by China Postdoctoral Science Foundation 2022TQ0047 and 2022M710465, and in part by Beijing University of Posts and Telecommunications-China Mobile Research Institute Joint Innovation Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yakun Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, Y. et al. (2024). Cloud-Edge-Device Collaborative Image Retrieval and Recognition for Mobile Web. In: Gao, H., Wang, X., Voros, N. (eds) Collaborative Computing: Networking, Applications and Worksharing. CollaborateCom 2023. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 562. Springer, Cham. https://doi.org/10.1007/978-3-031-54528-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-54528-3_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-54527-6

  • Online ISBN: 978-3-031-54528-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics