Skip to main content

A Multi-Agent Deep Reinforcement Learning-Based Approach to Mobility-Aware Caching

  • Conference paper
  • First Online:
Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom 2023)

Abstract

Mobile Edge Computing (MEC) is a technology that enables on-demand the provision of computing and storage services as close to the user as possible. In an MEC environment, frequently visited content can be deployed and cached upon edge servers to boost the efficiency of content delivery and thus improving user-perceived experience. However, due to the dynamic nature of MEC, it remains a great challenge how to fully exploit mobility information in yielding high-quality content caching decisions for delay-sensitive real-time mobile applications. To address this challenge, this paper proposes a novel mobility-aware caching method by leveraging a Multi-Agent Deep Reinforcement Learning-Based (MAACC) Approach model. The proposed method synthesizes a content fitness algorithm for estimating the priority of caching content with high user fitness and a collaborative caching strategy built upon a multi-agent deep reinforcement learning model. Empirical results clearly show that MAACC outperforms its peers regarding cache hit rate and transfer delay time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Farooq, M.J., Zhu, Q.: A multi-layer feedback system approach to resilient connectivity of remotely deployed mobile internet of things. IEEE Trans. Cogn. Commun. Networking 4(2), 422–432 (2018)

    Article  Google Scholar 

  2. Cao, K., Liu, Y., Meng, G., Sun, Q.: An overview on edge computing research. IEEE Access 8, 85714–85728 (2020)

    Article  Google Scholar 

  3. Chen, Z., Chen, Z., Ren, Z., Liang, L., Wen, W., Jia, Y.: Joint optimization of task caching, computation offloading and resource allocation for mobile edge computing. China Commun. 19, 142–159 (2022)

    Article  Google Scholar 

  4. Qiao, G., Leng, S., Maharjan, S., Zhang, Y., Ansari, N.: Deep reinforcement learning for cooperative content caching in vehicular edge computing and networks. IEEE Internet Things J. 7(1), 247–257 (2020)

    Article  Google Scholar 

  5. He, Y., Yu, F.R., Zhao, N., Leung, V.C.M., Yin, H.: Software-defined networks with mobile edge computing and caching for smart cities: a big data deep reinforcement learning approach. IEEE Commun. Mag. 55(12), 31–37 (2017)

    Article  Google Scholar 

  6. Wang, R., Li, M., Peng, L., Hu, Y., Hassan, M.M., Alelaiwi, A.: Cognitive multi-agent empowering mobile edge computing for resource caching and collaboration. Future Gener. Comput. Syst. 102, 66–74 (2020)

    Article  Google Scholar 

  7. Xia, X., Chen, F., He, Q., Grundy, J., Abdelrazek, M., Jin, H.: Online collaborative data caching in edge computing. IEEE Trans. Parallel Distrib. Syst. 32(2), 281–294 (2021)

    Article  Google Scholar 

  8. Zhao, J., Sun, X., Li, Q., Ma, X.: Edge caching and computation management for real-time internet of vehicles: an online and distributed approach. IEEE Trans. Intell. Transp. Syst. 22(4), 2183–2197 (2021)

    Article  Google Scholar 

  9. Zeng, Y., et al.: Smart caching based on user behavior for mobile edge computing. Inf. Sci. 503, 444–468 (2019)

    Article  Google Scholar 

  10. Yao, T., Chai, Y., Wang, S., Miao, X., Bu, X.: Radio signal automatic modulation classification based on deep learning and expert features. IEEE Xplore (2020)

    Google Scholar 

  11. Musa, S.S., Zennaro, M., Libsie, M., Pietrosemoli, E.: Mobility-aware proactive edge caching optimization scheme in information-centric IoV networks. Sensors 22(4), 1387 (2022)

    Article  Google Scholar 

  12. Wei, H., Luo, H., Sun, Y.: Mobility-aware service caching in mobile edge computing for internet of things. Sensors 20(3), 610 (2020)

    Article  Google Scholar 

  13. Sadeghi, A., Sheikholeslami, F., Giannakis, G.B.: Optimal and scalable caching for 5g using reinforcement learning of space-time popularities. IEEE J. Sel. Topics Signal Process. 12(1), 180–190 (2018)

    Article  Google Scholar 

  14. Jiang, W., Feng, G., Qin, S., Liang, Y.-C.: Learning-based cooperative content caching policy for mobile edge computing. In: ICC 2019–2019 IEEE International Conference on Communications (ICC). IEEE (2019)

    Google Scholar 

  15. Zhong, C., Gursoy, M.C., Velipasalar, S.: Deep reinforcement learning-based edge caching in wireless networks. IEEE Trans. Cogn. Commun. Networki. 6(1), 48–61 (2020)

    Article  Google Scholar 

  16. Song, J., Sheng, M., Quek, T.Q.S., Xu, C., Wang, X.: Learning-based content caching and sharing for wireless networks. IEEE Trans. Commun. 65(10), 4309–4324 (2017)

    Google Scholar 

  17. Jeong, S., Simeone, O., Kang, J.: Mobile edge computing via a UAV-mounted cloudlet: optimization of bit allocation and path planning. IEEE Trans. Veh. Technol. 67(3), 2049–2063 (2018)

    Article  Google Scholar 

  18. Cassandra, A.R., Littman, M.L., Zhang, N.L.: Incremental pruning: a simple, fast, exact method for partially observable Markov decision processes. arXiv:1302.1525 cs (2013)

  19. Li, Y., Zhou, A., Ma, X., Wang, S.: Profit-aware edge server placement. IEEE Internet Things J. 9(1), 55–67 (2022)

    Article  Google Scholar 

  20. Harper, F.M., Konstan, J.A.: The MovieLens datasets. ACM Trans. Interact. Intell. Syst. 5(4), 1–19 (2015)

    Article  Google Scholar 

  21. Cui, L., et al.: CREAT: blockchain-assisted compression algorithm of federated learning for content caching in edge computing. IEEE Internet Things J. 9(16), 14151–14161 (2022)

    Article  Google Scholar 

  22. Xiao, H., Zhao, J., Pei, Q., Feng, J., Liu, L., Shi, W.: Vehicle selection and resource optimization for federated learning in vehicular edge computing. IEEE Trans. Intell. Transp. Syst. 28, 11073–11087 (2021)

    Google Scholar 

  23. Banerjee, B., Kulkarni, A., Seetharam, A.: Greedy Caching: an optimized content placement strategy for information-centric networks. Comput. Networks 140, 78–91 (2018)

    Article  Google Scholar 

Download references

Acknowledgment

This article is supported by the Innovation Fund Project of Jiangxi Normal University(YJS2022065) and Domestic Visiting Program of Jiangxi Normal University. Additionally, this work is supported in part by Henan Province Science and Technology Projects (232102210024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunni Xia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, H. et al. (2024). A Multi-Agent Deep Reinforcement Learning-Based Approach to Mobility-Aware Caching. In: Gao, H., Wang, X., Voros, N. (eds) Collaborative Computing: Networking, Applications and Worksharing. CollaborateCom 2023. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 562. Springer, Cham. https://doi.org/10.1007/978-3-031-54528-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-54528-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-54527-6

  • Online ISBN: 978-3-031-54528-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics