Skip to main content

D-AE: A Discriminant Encode-Decode Nets for Data Generation

  • Conference paper
  • First Online:
Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom 2023)

Abstract

Imbalanced datasets often result in poor predictive model performance. To address this, minority class sample expansion is used, but two challenges remain. The first is to use algorithms to learn the main features of minority class samples, and the second is to differentiate the generated data from the majority class samples. To tackle these challenges in binary classification, we propose the Discriminant-Autoencoder (D-AE) algorithm. It has two mechanisms based on our insights. Firstly, an autoencoder is used to learn the main features of minority class samples by reconstructing the data with added noise. Secondly, a discriminator is trained on the raw data to distinguish the generated data from the majority class samples. Our proposed loss function, Discriminant-\(L_\theta \), balances the discriminant and reconstruction losses. Results from experiments on three datasets show that D-AE outperforms baseline algorithms and improves dataset applicability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akkalakshmi, M., Riyazuddin, Y.M., Revathi, V., Pal, A.: Autoencoder-based feature learning and up-sampling to enhance cancer prediction. Int. J. Future Gener. Commun. Netw. 13(1), 1453–1459 (2020)

    Google Scholar 

  2. AlAmir, M., AlGhamdi, M.: The role of generative adversarial network in medical image analysis: an in-depth survey. ACM Comput. Surv. (CSUR) 55(5), 1–36 (2022)

    Article  Google Scholar 

  3. Anguita, D., Ghio, A., Oneto, L., Parra Perez, X., Reyes Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: Proceedings of the 21th International European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, pp. 437–442 (2013)

    Google Scholar 

  4. Back, K., Crotty, K., Kazempour, S.M., Schwert, G.W.: Validity, tightness, and forecasting power of risk premium bounds. J. Financ. Econ. 144, 732–760 (2022)

    Article  Google Scholar 

  5. Baldi, P.: Boolean autoencoders and hypercube clustering complexity. Des. Codes Crypt. 65(3), 383–403 (2012)

    Article  MathSciNet  Google Scholar 

  6. Cetinkunt, S., Donmez, A.: CMAC learning controller for servo control of high precision machine tools. In: 1993 American Control Conference (1993)

    Google Scholar 

  7. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. AI Access Found. (1) (2002)

    Google Scholar 

  8. Chen, Z., Zhou, L., Yu, W.: Adasyn-random forest based intrusion detection model (2021)

    Google Scholar 

  9. Cho, K.: Simple sparsification improves sparse denoising autoencoders in denoising highly corrupted images. In: International Conference on Machine Learning (2013)

    Google Scholar 

  10. Creswell, A., White, T., Dumoulin, V., Arulkumaran, K., Sengupta, B., Bharath, A.A.: Generative adversarial networks: an overview. IEEE Signal Process. Mag. 35(1), 53–65 (2018)

    Article  Google Scholar 

  11. Egan, J.P.: Signal detection theory and roc analysis. In: Series in Cognition and Perception. Academic Press, New York (1975)

    Google Scholar 

  12. Gajera, V., Shubham, Gupta, R., Jana, P.K.: An effective multi-objective task scheduling algorithm using min-max normalization in cloud computing. In: 2016 2nd International Conference on Applied and Theoretical Computing and Communication Technology (iCATccT) (2016)

    Google Scholar 

  13. Garcia, S., Derrac, J., Cano, J., Herrera, F.: Prototype selection for nearest neighbor classification: taxonomy and empirical study. IEEE Trans. Pattern Anal. Mach. Intell. 34(3), 417 (2012)

    Article  Google Scholar 

  14. Gu, S., Yan, J., Xiao, Z., Ning, L., Tech, V.: What are driving users to click ads? User habit, attitude, and commercial intention (2010)

    Google Scholar 

  15. Gupta, A., Anand, A., Hasija, Y.: Recall-based machine learning approach for early detection of cervical cancer. In: 2021 6th International Conference for Convergence in Technology (I2CT) (2021)

    Google Scholar 

  16. Han, B., Wang, X., Ji, S., Zhang, G., He, J.: Data-enhanced stacked autoencoders for insufficient fault classification of machinery and its understanding via visualization. IEEE Access 8(99), 67790–67798 (2020)

    Article  Google Scholar 

  17. Han, H., Wang, W.Y., Mao, B.H.: Borderline-smote: a new over-sampling method in imbalanced data sets learning. In: Proceedings of the 2005 international conference on Advances in Intelligent Computing - Volume Part I (2005)

    Google Scholar 

  18. He, H., Yang, B., Garcia, E.A., Li, S.: Adasyn: adaptive synthetic sampling approach for imbalanced learning. In: IEEE International Joint Conference on Neural Networks, IJCNN 2008 (IEEE World Congress on Computational Intelligence) (2008)

    Google Scholar 

  19. Kachuee, M., Fazeli, S., Sarrafzadeh, M.: ECG heartbeat classification: a deep transferable representation. In: 2018 IEEE International Conference on Healthcare Informatics (ICHI), pp. 443–444. IEEE (2018)

    Google Scholar 

  20. Komoto, K., Nakatsuka, S., Aizawa, H., Kato, K., Kobayashi, H., Banno, K.: A performance evaluation of defect detection by using denoising autoencoder generative adversarial networks. In: 2018 International Workshop on Advanced Image Technology (IWAIT), pp. 1–4. IEEE (2018)

    Google Scholar 

  21. Lobo, J.M., Jiménez-Valverde, A., Real, R.: AUC: a misleading measure of the performance of predictive distribution models. Glob. Ecol. Biogeogr. 17(2), 145–151 (2008)

    Article  Google Scholar 

  22. Lu, C., Lin, S., Liu, X., Shi, H.: Telecom fraud identification based on adasyn and random forest. In: 2020 5th International Conference on Computer and Communication Systems (ICCCS) (2020)

    Google Scholar 

  23. Lu, X., Tsao, Y., Matsuda, S., Hori, C.: Speech enhancement based on deep denoising autoencoder. In: Interspeech, vol. 2013, pp. 436–440 (2013)

    Google Scholar 

  24. Mehta, J., Majumdar, A.: Rodeo: robust de-aliasing autoencoder for real-time medical image reconstruction. Pattern Recognit. J. Pattern Recognit. Soc. 63, 499–510 (2017)

    Article  Google Scholar 

  25. Mei, S., Wang, Y., Wen, G.: Automatic fabric defect detection with a multi-scale convolutional denoising autoencoder network model. Sensors 18(4), 1064 (2018)

    Article  Google Scholar 

  26. Mqadi, N.M., Naicker, N., Adeliyi, T.: Solving misclassification of the credit card imbalance problem using near miss. Math. Probl. Eng. Theory Methods Appl. (2021-Pt.32) (2021)

    Google Scholar 

  27. Naseriparsa, M., Kashani, M.: Combination of PCA with smote resampling to boost the prediction rate in lung cancer dataset. Found. Comput. Sci. (FCS) (3) (2013)

    Google Scholar 

  28. Perri, S.: Design of flexible hardware accelerators for image convolutions and transposed convolutions. J. Imaging 7, 210 (2021)

    Article  Google Scholar 

  29. Prabakaran, N., Dudi, S.V., Palaniappan, R., Kannadasan, R., Sasidhar, V.: Forecasting the momentum using customised loss function for financial series. Int. J. Intell. Comput. Cybern. 14(4), 702–713 (2021)

    Article  Google Scholar 

  30. Pu, Y., Zhe, G., Henao, R., Xin, Y., Carin, L.: Variational autoencoder for deep learning of images, labels and captions. In: NIPS 2016 (2016)

    Google Scholar 

  31. Seo, J.H., Kim, Y.H.: Machine-learning approach to optimize smote ratio in class imbalance dataset for intrusion detection. Hindawi Limited (2018)

    Google Scholar 

  32. Shon, T., Moon, J.: A hybrid machine learning approach to network anomaly detection. Inf. Sci. 177(18), 3799–3821 (2007)

    Article  Google Scholar 

  33. Sokolova, M., Japkowicz, N., Szpakowicz, S.: Beyond accuracy, F-score and ROC: a family of discriminant measures for performance evaluation. In: Sattar, A., Kang, B. (eds.) Australasian Joint Conference on Artificial Intelligence. LNCS, vol. 4304, pp. 1015–1021. Springer, Heidelberg (2006). https://doi.org/10.1007/11941439_114

    Chapter  Google Scholar 

  34. Song, Y., Peng, Y.: A MCDM-based evaluation approach for imbalanced classification methods in financial risk prediction. IEEE Access 7, 84897–84906 (2019)

    Article  Google Scholar 

  35. Wang, L.J., Jiang, Y.: Collocating recommendation method for E-commerce based on fuzzy C-means clustering algorithm. J. Math. 2022 (2022)

    Google Scholar 

  36. Yang, Y., Xu, Z.: Rethinking the value of labels for improving class-imbalanced learning (2020)

    Google Scholar 

  37. Zhao, Y., et al.: Constructing non-small cell lung cancer survival prediction model based on borderline-smote and PFS. Int. J. Biomed. Eng. 336–341 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, G. et al. (2024). D-AE: A Discriminant Encode-Decode Nets for Data Generation. In: Gao, H., Wang, X., Voros, N. (eds) Collaborative Computing: Networking, Applications and Worksharing. CollaborateCom 2023. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 562. Springer, Cham. https://doi.org/10.1007/978-3-031-54528-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-54528-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-54527-6

  • Online ISBN: 978-3-031-54528-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics